当前位置: X-MOL 学术J. Differ. Geom. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Volume preserving flow by powers of the $k$th mean curvature
Journal of Differential Geometry ( IF 1.3 ) Pub Date : 2021-02-10 , DOI: 10.4310/jdg/1612975015
Ben Andrews 1 , Yong Wei 1
Affiliation  

We consider the flow of closed convex hypersurfaces in Euclidean space $\mathbb{R}^{n+1}$ with speed given by a power of the $k$‑th mean curvature $E_k$ plus a global term chosen to impose a constraint involving the enclosed volume $V_{n+1}$ and the mixed volume $V_{n+1-k}$ of the evolving hypersurface. We prove that if the initial hypersurface is strictly convex, then the solution of the flow exists for all time and converges to a round sphere smoothly. No curvature pinching assumption is required on the initial hypersurface.

中文翻译:

第k个平均曲率的幂保持体积的流量

我们考虑欧几里德空间$ \ mathbb {R} ^ {n + 1} $中的闭合凸超曲面的流动,其速度由$ k $次平均曲率$ E_k $的幂加上选择用来施加约束涉及封闭的体积$ V_ {n + 1} $和演化的超曲面的混合体积$ V_ {n + 1-k} $。我们证明,如果初始超曲面是严格凸的,则流的解一直存在,并且平滑地收敛到圆球。在初始超曲面上不需要曲率收缩假设。
更新日期:2021-02-10
down
wechat
bug