当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fe‐Based Catalysts for the Direct Photohydrogenation of CO2 to Value‐Added Hydrocarbons
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2021-02-09 , DOI: 10.1002/aenm.202002783 Zhenhua Li 1, 2 , Jinjia Liu 3, 4 , Run Shi 1, 5 , Geoffrey I. N. Waterhouse 6 , Xiao‐Dong Wen 3, 4 , Tierui Zhang 1, 5
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2021-02-09 , DOI: 10.1002/aenm.202002783 Zhenhua Li 1, 2 , Jinjia Liu 3, 4 , Run Shi 1, 5 , Geoffrey I. N. Waterhouse 6 , Xiao‐Dong Wen 3, 4 , Tierui Zhang 1, 5
Affiliation
The solar‐driven conversion of CO2 into carbon‐based fuels and other valuable chemical feedstocks is actively being pursued as an approach for curbing greenhouse gas emissions. Herein, a series of novel Fe‐based catalysts with different chemical compositions are successfully fabricated through the hydrogen reduction of MgFeAl‐layered double hydroxide nanosheets at temperatures from 300 to 700 °C. The catalysts obtained are denoted herein as Fe‐x, where x is the reduction temperature in celsius. Fe‐500 offers outstanding activity for the photothermal conversion of CO2 to C2+ hydrocarbons under ultraviolet‐visible (UV‐Vis) irradiation (CO2 conversion 50.1%, C2+ selectivity 52.9%). Characterization studies using X‐ray diffraction, extended X‐ray absorption fine structure, Mössbauer spectroscopy, and high‐resolution transmission electron microscopy determine that the Fe‐500 catalyst is comprised of Fe and FeOx nanoparticles on a MgO–Al2O3 mixed metal oxide support. Density functional theory calculations establish that heterostructures consisting of partially oxidized metallic Fe nanoparticles improve the CC coupling ability of CO2 hydrogenation intermediates, thus enhancing the selectivity to C2+ products. This work introduces a novel photothermal hydrogenation strategy for converting CO2 into valuable chemicals and also opens new avenues toward the development of related solar energy utilization schemes.
中文翻译:
Fe基催化剂,用于将CO2直接光氢化为增值的碳氢化合物
太阳能驱动的将CO 2转化为碳基燃料和其他有价值的化学原料的方法正积极地作为抑制温室气体排放的一种方法。本文中,通过在300至700 ° C的温度下对MgFeAl层状双氢氧化物纳米片进行氢还原,成功制备了一系列化学成分不同的新型铁基催化剂 。所得催化剂在本文中表示为Fe- x,其中x是还原温度,单位为摄氏度。的Fe-500提供了出色的活性为CO的光热转换2至C 2+紫外-可见(UV-VIS)照射下的烃(CO 2转化率50.1%,C2+选择性52.9%)。使用X射线衍射,扩展的X射线吸收精细结构,穆斯堡尔光谱和高分辨率透射电子显微镜进行的表征研究确定,Fe-500催化剂由混合在MgO-Al 2 O 3上的Fe和FeO x纳米颗粒组成金属氧化物载体。密度泛函理论计算表明,由部分氧化的金属Fe纳米颗粒组成的异质结构提高了CO 2加氢中间体的CC偶联能力,从而提高了对C 2+产物的选择性。这项工作介绍了一种新颖的用于转换CO 2的光热加氢策略。 转化为有价值的化学品,也为开发相关的太阳能利用计划开辟了新途径。
更新日期:2021-03-25
中文翻译:
Fe基催化剂,用于将CO2直接光氢化为增值的碳氢化合物
太阳能驱动的将CO 2转化为碳基燃料和其他有价值的化学原料的方法正积极地作为抑制温室气体排放的一种方法。本文中,通过在300至700 ° C的温度下对MgFeAl层状双氢氧化物纳米片进行氢还原,成功制备了一系列化学成分不同的新型铁基催化剂 。所得催化剂在本文中表示为Fe- x,其中x是还原温度,单位为摄氏度。的Fe-500提供了出色的活性为CO的光热转换2至C 2+紫外-可见(UV-VIS)照射下的烃(CO 2转化率50.1%,C2+选择性52.9%)。使用X射线衍射,扩展的X射线吸收精细结构,穆斯堡尔光谱和高分辨率透射电子显微镜进行的表征研究确定,Fe-500催化剂由混合在MgO-Al 2 O 3上的Fe和FeO x纳米颗粒组成金属氧化物载体。密度泛函理论计算表明,由部分氧化的金属Fe纳米颗粒组成的异质结构提高了CO 2加氢中间体的CC偶联能力,从而提高了对C 2+产物的选择性。这项工作介绍了一种新颖的用于转换CO 2的光热加氢策略。 转化为有价值的化学品,也为开发相关的太阳能利用计划开辟了新途径。