当前位置:
X-MOL 学术
›
Acta Cryst. B
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The crystal structure and thermal decomposition kinetics of cis‐hexanitrostilbene
Acta Crystallographica Section B ( IF 1.3 ) Pub Date : 2021-02-09 , DOI: 10.1107/s2052520620015371 Yunzhang Liu , Lizhen Chen , Jianlong Wang , Jun Chen , Jingqi Wang , Hongxia Pan
Acta Crystallographica Section B ( IF 1.3 ) Pub Date : 2021-02-09 , DOI: 10.1107/s2052520620015371 Yunzhang Liu , Lizhen Chen , Jianlong Wang , Jun Chen , Jingqi Wang , Hongxia Pan
Hexanitrostilbene (HNS) is an energetic material with wide application and excellent comprehensive performance. cis‐HNS is successfully prepared using crude HNS with a purity of 95% as the raw material and N‐methyl pyrrolidone (NMP) as the solvent. After separation and purification, acetone is used as a solvent to obtain light‐yellow crystals at room temperature. The molecular structure of cis‐HNS is determined through analysis of Fourier transform infrared, 13C NMR and 1H NMR spectroscopy and single‐crystal X‐ray diffraction data. The thermal decomposition properties of cis and trans‐HNS are studied using differential scanning calorimetry (DSC). When the heating rate is low, cis‐HNS will undergo a crystal transformation after melting, from liquid cis‐HNS to liquid trans‐HNS, and then it will solidify and release heat. According to the results of DSC data, the apparent kinetic parameters of thermal decomposition of cis‐ and trans‐HNS were obtained by Kissinger method [Kissinger (1957). Anal. Chem.29, 1702–1706] and Ozawa method [Ozawa (1965). Bull. Chem. Soc. Jpn.38, 1881–1886], respectively. The spontaneous combustion temperature and self‐accelerating decomposition temperature of cis and trans‐HNS are calculated by the Zhang‐Hu‐Xie‐Li method [Zhang et al. (1994). Thermochim. Acta, 244, 171–176].
中文翻译:
顺六硝基二苯乙烯的晶体结构和热分解动力学
六硝基二苯乙烯(HNS)是一种能量广泛的材料,具有广泛的应用和优异的综合性能。使用纯度为95%的HNS粗品和N-甲基吡咯烷酮(NMP)作为溶剂成功制备了cis -HNS 。分离和纯化后,使用丙酮作为溶剂,在室温下获得浅黄色晶体。顺式-HNS的分子结构是通过傅立叶变换红外光谱,13 C NMR和1 H NMR光谱分析以及单晶X射线衍射数据确定的。顺式和反式的热分解性质‐HNS使用差示扫描量热法(DSC)进行研究。当加热速率低时,顺式-HNS熔融后会发生结晶转变,从液态的顺式-HNS转变为液态的反式-HNS,然后凝固并释放热量。根据DSC数据的结果,通过Kissinger方法获得了顺式和反式-HNS热分解的表观动力学参数[Kissinger(1957)。肛门 化学 29,1702至1706年]和Ozawa方法[小泽(1965)。公牛。化学 Soc。日本。38,1881年至1886年],分别。顺式的自燃温度和自加速分解温度反式和HNS的计算方法是Zhang-Hu-Xie-Li方法[Zhang et al。(1994)。Thermochim。ACTA,244,171-176。
更新日期:2021-02-09
中文翻译:
顺六硝基二苯乙烯的晶体结构和热分解动力学
六硝基二苯乙烯(HNS)是一种能量广泛的材料,具有广泛的应用和优异的综合性能。使用纯度为95%的HNS粗品和N-甲基吡咯烷酮(NMP)作为溶剂成功制备了cis -HNS 。分离和纯化后,使用丙酮作为溶剂,在室温下获得浅黄色晶体。顺式-HNS的分子结构是通过傅立叶变换红外光谱,13 C NMR和1 H NMR光谱分析以及单晶X射线衍射数据确定的。顺式和反式的热分解性质‐HNS使用差示扫描量热法(DSC)进行研究。当加热速率低时,顺式-HNS熔融后会发生结晶转变,从液态的顺式-HNS转变为液态的反式-HNS,然后凝固并释放热量。根据DSC数据的结果,通过Kissinger方法获得了顺式和反式-HNS热分解的表观动力学参数[Kissinger(1957)。肛门 化学 29,1702至1706年]和Ozawa方法[小泽(1965)。公牛。化学 Soc。日本。38,1881年至1886年],分别。顺式的自燃温度和自加速分解温度反式和HNS的计算方法是Zhang-Hu-Xie-Li方法[Zhang et al。(1994)。Thermochim。ACTA,244,171-176。