Cell Reports Physical Science ( IF 7.9 ) Pub Date : 2021-02-05 , DOI: 10.1016/j.xcrp.2021.100332 Wei-Tse Lee , Felix D. Bobbink , Antoine P. van Muyden , Kun-Han Lin , Clémence Corminboeuf , Reza R. Zamani , Paul J. Dyson
The use of methane as one of the cleanest energy sources has attracted significant public awareness, and methane production processes with less environmental impact than fracking are receiving considerable attention. Catalytic hydrocracking of plastic materials has been considered a potential clean alternative. However, catalysts that convert heterogeneous plastic feeds into a single product under industrially relevant conditions are lacking. Here, we describe a Ru-modified zeolite that catalytically transforms polyethylene, polypropylene, and polystyrene into grid-compatible methane (>97% purity), at 300°C–350°C using near-stoichiometric amounts of H2. Mechanistic studies reveal a chain-end initiation process with limited isomerization of plastic substrates. A Ru site-dominant mechanism is proposed based on these studies and density functional theory (DFT) computations. We foresee that such a plastic-to-methane process may increase the intelligent use of plastic waste via energy recovery. There is also the potential to accommodate emerging sustainable H2 production into existing natural gas networks, while integrating waste management, fuel production, and energy storage.
中文翻译:
合成聚合物的催化加氢裂化成与网格相容的气流
将甲烷用作最清洁的能源之一已经引起了公众的广泛关注,与压裂相比对环境影响较小的甲烷生产工艺受到了广泛关注。塑料材料的催化加氢裂化已被认为是潜在的清洁替代品。但是,缺乏在工业上相关的条件下将非均质塑料原料转化为单一产品的催化剂。在这里,我们描述了一种Ru改性的沸石,该沸石在300°C–350°C下使用接近化学计量的H 2将聚乙烯,聚丙烯和聚苯乙烯催化转化为与网格相容的甲烷(纯度> 97%)。。机理研究表明,塑料底物的异构化作用有限,是链端引发过程。基于这些研究和密度泛函理论(DFT)计算,提出了Ru位点主导机制。我们预见到,这种从塑料到甲烷的过程可能会通过能量回收来增加塑料废物的智能利用。还有可能将新兴的可持续H 2生产纳入现有的天然气网络,同时将废物管理,燃料生产和能量存储整合在一起。