当前位置:
X-MOL 学术
›
Anal. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
“Add on” Dual-Modal Optical Immunoassay by Plasmonic Metal NP-Semiconductor Composites
Analytical Chemistry ( IF 6.7 ) Pub Date : 2021-02-03 , DOI: 10.1021/acs.analchem.0c04856 Yuan Zhao 1 , Lixia Shi 1 , Hongyan Miao 1 , Xiaohui Jing 1
Analytical Chemistry ( IF 6.7 ) Pub Date : 2021-02-03 , DOI: 10.1021/acs.analchem.0c04856 Yuan Zhao 1 , Lixia Shi 1 , Hongyan Miao 1 , Xiaohui Jing 1
Affiliation
Staphylococcus aureus enterotoxins (SEs, involving SEA, SEB, SEC, SED, and SEE) are considered to be the common toxins causing food poisoning and are not allowed to be detected in food. Accurate and anti-interfering SE detection in a complex food matrix is urgently required for food safety. Dual-modal optical sensors are able to avoid mutual interference of optical signals and possess the advantages of high accuracy and sensitivity. Herein, Au nanobipyramids (Au NBPs) and persistent luminescence ZnGeGaO:Cr,Er,Yb nanoparticle (ZGGO NP) nanocomposites are fabricated using the SEC antibody/antigen as templates, which display enhanced persistent luminescence (PL) and surface-enhanced Raman scattering (SERS) strength. The enhanced PL of Au NBP-ZGGO NP nanocomposites is ascribed to plasmon-enhanced radiative transitions. It is first found that ZGGO NPs display unique upconversion fluorescence, which can be absorbed by Au NBPs and that they largely excite the intensive electromagnetic field for SERS enhancement. Dual-model optical immunoassay achieved anti-interfering and specific SEC detection with a limit of detection of 7.5 pg/mL for the PL signal and 8.9 pg/mL for the SERS signal in the range of 10 pg/mL–100 ng/mL. Depending on the plasmon-enhanced PL mechanism and upconversion fluorescence-enhanced SERS principle, plasmonic NP-semiconductor composites show potential prospects in the establishment of multimodal optical biosensors for the quantitative and accurate evaluation of analytes in a complex food matrix.
中文翻译:
等离子体金属NP-半导体复合材料的“附加”双模态光学免疫分析
金黄色葡萄球菌肠毒素(SEs,涉及SEA,SEB,SEC,SED和SEE)被认为是导致食物中毒的常见毒素,并且不允许在食物中检出。为了食品安全,迫切需要在复杂的食品基质中进行准确且抗干扰的SE检测。双模光学传感器能够避免光信号的相互干扰,具有精度高,灵敏度高的优点。本文中,以SEC抗体/抗原为模板制备了Au纳米双锥体(Au NBPs)和持久发光的ZnGeGaO:Cr,Er,Yb纳米颗粒(ZGGO NP)纳米复合材料,显示出增强的持久发光(PL)和表面增强拉曼散射( SERS)强度。Au NBP-ZGGO NP纳米复合材料的PL增强归因于等离激元增强的辐射跃迁。首次发现ZGGO NPs显示出独特的上转换荧光,可以被Au NBP吸收,并且它们在很大程度上激发了用于SERS增强的强电磁场。双模式光学免疫测定实现了抗干扰和特异性SEC检测,PL信号的检出限为7.5 pg / mL,SERS信号的检出限为8.9 pg / mL,范围为10 pg / mL–100 ng / mL。依靠等离激元增强的PL机制和上转换荧光增强的SERS原理,等离激元NP半导体复合材料在建立用于定量和准确评估复杂食品基质中分析物的多模式光学生物传感器方面显示出潜在的前景。双模式光学免疫测定实现了抗干扰和特异性SEC检测,PL信号的检出限为7.5 pg / mL,SERS信号的检出限为8.9 pg / mL,范围为10 pg / mL–100 ng / mL。依靠等离激元增强的PL机制和上转换荧光增强的SERS原理,等离激元NP半导体复合材料在建立用于定量和准确评估复杂食品基质中分析物的多模式光学生物传感器方面显示出潜在的前景。双模式光学免疫测定实现了抗干扰和特异性SEC检测,PL信号的检出限为7.5 pg / mL,SERS信号的检出限为8.9 pg / mL,范围为10 pg / mL–100 ng / mL。依靠等离激元增强的PL机制和上转换荧光增强的SERS原理,等离激元NP半导体复合材料在建立用于定量和准确评估复杂食品基质中分析物的多模式光学生物传感器方面显示出潜在的前景。
更新日期:2021-02-16
中文翻译:
等离子体金属NP-半导体复合材料的“附加”双模态光学免疫分析
金黄色葡萄球菌肠毒素(SEs,涉及SEA,SEB,SEC,SED和SEE)被认为是导致食物中毒的常见毒素,并且不允许在食物中检出。为了食品安全,迫切需要在复杂的食品基质中进行准确且抗干扰的SE检测。双模光学传感器能够避免光信号的相互干扰,具有精度高,灵敏度高的优点。本文中,以SEC抗体/抗原为模板制备了Au纳米双锥体(Au NBPs)和持久发光的ZnGeGaO:Cr,Er,Yb纳米颗粒(ZGGO NP)纳米复合材料,显示出增强的持久发光(PL)和表面增强拉曼散射( SERS)强度。Au NBP-ZGGO NP纳米复合材料的PL增强归因于等离激元增强的辐射跃迁。首次发现ZGGO NPs显示出独特的上转换荧光,可以被Au NBP吸收,并且它们在很大程度上激发了用于SERS增强的强电磁场。双模式光学免疫测定实现了抗干扰和特异性SEC检测,PL信号的检出限为7.5 pg / mL,SERS信号的检出限为8.9 pg / mL,范围为10 pg / mL–100 ng / mL。依靠等离激元增强的PL机制和上转换荧光增强的SERS原理,等离激元NP半导体复合材料在建立用于定量和准确评估复杂食品基质中分析物的多模式光学生物传感器方面显示出潜在的前景。双模式光学免疫测定实现了抗干扰和特异性SEC检测,PL信号的检出限为7.5 pg / mL,SERS信号的检出限为8.9 pg / mL,范围为10 pg / mL–100 ng / mL。依靠等离激元增强的PL机制和上转换荧光增强的SERS原理,等离激元NP半导体复合材料在建立用于定量和准确评估复杂食品基质中分析物的多模式光学生物传感器方面显示出潜在的前景。双模式光学免疫测定实现了抗干扰和特异性SEC检测,PL信号的检出限为7.5 pg / mL,SERS信号的检出限为8.9 pg / mL,范围为10 pg / mL–100 ng / mL。依靠等离激元增强的PL机制和上转换荧光增强的SERS原理,等离激元NP半导体复合材料在建立用于定量和准确评估复杂食品基质中分析物的多模式光学生物传感器方面显示出潜在的前景。