当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fluorinating Dopant-Free Small-Molecule Hole-Transport Material to Enhance the Photovoltaic Property
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-02-02 , DOI: 10.1021/acsami.0c20584 Yi Kai Wang 1 , Hui Ma 2 , Qiaoyun Chen 2 , Quan Sun 1 , Zhengxu Liu 1 , Zhe Sun 1 , Xuguang Jia 1 , Yuanyuan Zhu 1 , Shuai Zhang 1 , Jing Zhang 1 , Ningyi Yuan 1 , Jianning Ding 1 , Yi Zhou 2 , Bo Song 2 , Yongfang Li 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-02-02 , DOI: 10.1021/acsami.0c20584 Yi Kai Wang 1 , Hui Ma 2 , Qiaoyun Chen 2 , Quan Sun 1 , Zhengxu Liu 1 , Zhe Sun 1 , Xuguang Jia 1 , Yuanyuan Zhu 1 , Shuai Zhang 1 , Jing Zhang 1 , Ningyi Yuan 1 , Jianning Ding 1 , Yi Zhou 2 , Bo Song 2 , Yongfang Li 2
Affiliation
For the stability and commercial development of the perovskite solar cells (PVK-SCs), synthesizing high-efficiency dopant-free hole-transport materials (DF-HTMs) and exploring how the DF-HTM structure affects the photovoltaic performance is inevitable. Two small-molecule DF-HTMs based on 2,2′-bithiophene as a central part (denoted by BT-MTP and DFBT-MTP) were designed and synthesized. DFBT-MTP, with two more fluorine atoms substituted on the 2,2′-bithiophene group, exhibited enhanced photovoltaic property as DF-HTMs, including larger backbone planarity, declining highest occupied molecular orbit (HOMO) energy level, increasing hole transportation, more effective passivation, and efficient charge extraction. With fluorinated DFBT-MTP being applied as DF-HTMs in p–i–n PVK-SCs, an efficiency of 20.2% was achieved, showing ∼35% efficiency increase compared with the nonfluorinated BT-MTP-based devices. The leading power conversion efficiency (PCE) indicates that the fluorinated compounds should be a promising direction for exploring high-performance DF-HTMs in the p–i–n PVK-SCs.
中文翻译:
不含氟化物的小分子空穴传输材料,可增强光伏性能
为了钙钛矿太阳能电池(PVK-SC)的稳定和商业化发展,必须合成高效的无掺杂空穴传输材料(DF-HTM),并探索DF-HTM结构如何影响光伏性能。设计并合成了两个以2,2'-联噻吩为中心的小分子DF-HTM(以BT-MTP和DFBT-MTP表示)。DFBT-MTP在2,2'-联噻吩基团上取代了两个以上的氟原子,与DF-HTM相比,具有增强的光伏性能,包括更大的主链平面性,降低的最高占据分子轨道(HOMO)能级,增加的空穴传输,更多有效的钝化和有效的电荷提取。通过将氟化的DFBT-MTP用作PN-n PVK-SC的DF-HTM,可以达到20.2%的效率,与基于非氟化BT-MTP的设备相比,效率提高了约35%。领先的功率转换效率(PCE)表明,氟化物应成为在p–i–n PVK-SC中探索高性能DF-HTM的有希望的方向。
更新日期:2021-02-17
中文翻译:
不含氟化物的小分子空穴传输材料,可增强光伏性能
为了钙钛矿太阳能电池(PVK-SC)的稳定和商业化发展,必须合成高效的无掺杂空穴传输材料(DF-HTM),并探索DF-HTM结构如何影响光伏性能。设计并合成了两个以2,2'-联噻吩为中心的小分子DF-HTM(以BT-MTP和DFBT-MTP表示)。DFBT-MTP在2,2'-联噻吩基团上取代了两个以上的氟原子,与DF-HTM相比,具有增强的光伏性能,包括更大的主链平面性,降低的最高占据分子轨道(HOMO)能级,增加的空穴传输,更多有效的钝化和有效的电荷提取。通过将氟化的DFBT-MTP用作PN-n PVK-SC的DF-HTM,可以达到20.2%的效率,与基于非氟化BT-MTP的设备相比,效率提高了约35%。领先的功率转换效率(PCE)表明,氟化物应成为在p–i–n PVK-SC中探索高性能DF-HTM的有希望的方向。