当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Investigation of AgGaSe2 as a Wide Gap Solar Cell Absorber
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-02-02 , DOI: 10.1021/acsaem.0c02909
Jes K. Larsen 1 , Olivier Donzel-Gargand 1 , Kostiantyn V. Sopiha 1 , Jan Keller 1 , Kristina Lindgren 2 , Charlotte Platzer-Björkman 1 , Marika Edoff 1
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-02-02 , DOI: 10.1021/acsaem.0c02909
Jes K. Larsen 1 , Olivier Donzel-Gargand 1 , Kostiantyn V. Sopiha 1 , Jan Keller 1 , Kristina Lindgren 2 , Charlotte Platzer-Björkman 1 , Marika Edoff 1
Affiliation
![]() |
The compound AgGaSe2 has received limited attention as a potential wide gap solar cell material for tandem applications, despite its suitable band gap. This study aims to investigate the potential of this material by deposition of thin films by co-evaporation and production of solar cell devices. Since AgGaSe2 has a very low tolerance to off-stoichiometry, reference materials of possible secondary phases in the Ag2Se–Ga2Se3 system were also produced. Based on these samples, it was concluded that X-ray diffraction is suited to distinguish the phases in this material system. An attempt to use Raman spectroscopy to identify secondary phases was less successful. Devices were produced using absorbers containing the secondary phases likely formed during co-evaporation. When grown under slightly Ag-rich conditions, the Ag9GaSe6 secondary phase was present along with AgGaSe2, which resulted in devices being shunted under illumination. When absorbers were grown under Ag-deficient conditions, the AgGa5Se8 secondary phase was observed, making the device behavior dependent on the processing route. Deposition with a three-stage evaporation (Ag-poor, Ag-rich, and Ag-poor) resulted in AgGa5Se8 layers at both front and back surfaces, leading to charge carrier blocking in devices. Deposition of the absorber with a one-stage process, on the other hand, caused the formation of AgGa5Se8 locally extended through the entire film, but no continuous layer was found. As a consequence, these devices were not blocking and achieved an efficiency of up to 5.8%, which is the highest reported to date for AgGaSe2 solar cells.
中文翻译:
AgGaSe 2作为宽间隙太阳能电池吸收剂的研究
尽管具有合适的带隙,但是作为潜在的用于串联应用的宽间隙太阳能电池材料,化合物AgGaSe 2受到了有限的关注。这项研究的目的是研究通过共蒸发和太阳能电池装置生产而沉积薄膜来研究这种材料的潜力。由于AgGaSe 2对非化学计量的耐受性非常低,因此Ag 2 Se–Ga 2 Se 3中可能存在第二相的参考材料系统也产生了。基于这些样品,可以得出结论,X射线衍射适合于区分该材料系统中的相。使用拉曼光谱法鉴定次生相的尝试不太成功。使用包含可能在共蒸发过程中形成的次级相的吸收器生产器件。当在稍微富银的条件下生长时,Ag 9 GaSe 6第二相与AgGaSe 2一起存在,这导致器件在光照下被分流。当吸收剂在缺银条件下生长时,AgGa 5 Se 8观察到第二阶段,使得设备行为取决于处理路径。通过三阶段蒸发(贫银,富银和贫银)进行沉积会在正面和背面产生AgGa 5 Se 8层,从而导致器件中的载流子阻塞。另一方面,用一步法沉积吸收剂会导致形成AgGa 5 Se 8局部延伸遍及整个薄膜,但未发现连续层。结果,这些器件没有被阻挡,效率高达5.8%,这是迄今为止报道的AgGaSe 2太阳能电池的最高效率。
更新日期:2021-02-22
中文翻译:

AgGaSe 2作为宽间隙太阳能电池吸收剂的研究
尽管具有合适的带隙,但是作为潜在的用于串联应用的宽间隙太阳能电池材料,化合物AgGaSe 2受到了有限的关注。这项研究的目的是研究通过共蒸发和太阳能电池装置生产而沉积薄膜来研究这种材料的潜力。由于AgGaSe 2对非化学计量的耐受性非常低,因此Ag 2 Se–Ga 2 Se 3中可能存在第二相的参考材料系统也产生了。基于这些样品,可以得出结论,X射线衍射适合于区分该材料系统中的相。使用拉曼光谱法鉴定次生相的尝试不太成功。使用包含可能在共蒸发过程中形成的次级相的吸收器生产器件。当在稍微富银的条件下生长时,Ag 9 GaSe 6第二相与AgGaSe 2一起存在,这导致器件在光照下被分流。当吸收剂在缺银条件下生长时,AgGa 5 Se 8观察到第二阶段,使得设备行为取决于处理路径。通过三阶段蒸发(贫银,富银和贫银)进行沉积会在正面和背面产生AgGa 5 Se 8层,从而导致器件中的载流子阻塞。另一方面,用一步法沉积吸收剂会导致形成AgGa 5 Se 8局部延伸遍及整个薄膜,但未发现连续层。结果,这些器件没有被阻挡,效率高达5.8%,这是迄今为止报道的AgGaSe 2太阳能电池的最高效率。