当前位置:
X-MOL 学术
›
Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Biological Reduction of Nitric Oxide for Efficient Recovery of Nitrous Oxide as an Energy Source
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2021-01-12 , DOI: 10.1021/acs.est.0c04037 Li-Kun Wang 1, 2 , Xueming Chen 3 , Wei Wei 1 , Qiuxiang Xu 1, 2 , Jing Sun 1, 2 , Giorgio Mannina 1, 4 , Lan Song 5 , Bing-Jie Ni 1, 2
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2021-01-12 , DOI: 10.1021/acs.est.0c04037 Li-Kun Wang 1, 2 , Xueming Chen 3 , Wei Wei 1 , Qiuxiang Xu 1, 2 , Jing Sun 1, 2 , Giorgio Mannina 1, 4 , Lan Song 5 , Bing-Jie Ni 1, 2
Affiliation
Chemical absorption–biological reduction based on Fe(II)EDTA is a promising technology to remove nitric oxide (NO) from flue gases. However, limited effort has been made to enable direct energy recovery from NO through production of nitrous oxide (N2O) as a potential renewable energy rather than greenhouse gas. In this work, the enhanced energy recovery in the form of N2O via biological NO reduction was investigated by conducting short-term and long-term experiments at different Fe(II)EDTA–NO and organic carbon levels. The results showed both NO reductase and N2O reductase were inhibited at Fe(II)EDTA–NO concentration up to 20 mM, with the latter being inhibited more significantly, thus facilitating N2O accumulation. Furthermore, N2O accumulation was enhanced under carbon-limiting conditions because of electron competition during short-term experiments. Up to 47.5% of NO–N could be converted to gaseous N2O–N, representing efficient N2O recovery. Fe(II)EDTA–NO reduced microbial diversity and altered the community structure toward Fe(II)EDTA–NO-reducing bacteria-dominated culture during long-term experiments. The most abundant bacterial genus Pseudomonas, which was able to resist the toxicity of Fe(II)EDTA–NO, was significantly enriched, with its relative abundance increased from 1.0 to 70.3%, suggesting Pseudomonas could be the typical microbe for the energy recovery technology in NO-based denitrification.
中文翻译:
一氧化氮的生物还原以有效回收一氧化二氮作为能源
基于Fe(II)EDTA的化学吸收-生物还原是一种从烟气中去除一氧化氮(NO)的有前途的技术。然而,已经做出了有限的努力以通过产生作为潜在的可再生能源而不是温室气体的一氧化二氮(N 2 O)来从NO中直接回收能源。在这项工作中,通过在不同的Fe(II)EDTA-NO和有机碳水平下进行短期和长期实验,研究了通过生物NO还原以N 2 O形式增强的能量回收。结果表明,在Fe(II)EDTA-NO浓度高达20 mM时,NO还原酶和N 2 O还原酶均被抑制,后者被更显着地抑制,从而促进了N 2 O的积累。此外,N在碳限制条件下,由于短期实验中的电子竞争,2 O的积累得以增强。高达47.5%的NO–N可以转化为气态N 2 O–N,表示有效的N 2 O回收率。Fe(II)EDTA-NO减少了微生物的多样性,并在长期实验中朝着Fe(II)EDTA-NO减少细菌为主的培养改变了群落结构。能够抵抗Fe(II)EDTA-NO毒性的最丰富的细菌属假单胞菌被大量富集,其相对丰度从1.0增加到70.3%,表明假单胞菌可能是能量回收技术的典型微生物。在基于NO的反硝化中。
更新日期:2021-02-02
中文翻译:
一氧化氮的生物还原以有效回收一氧化二氮作为能源
基于Fe(II)EDTA的化学吸收-生物还原是一种从烟气中去除一氧化氮(NO)的有前途的技术。然而,已经做出了有限的努力以通过产生作为潜在的可再生能源而不是温室气体的一氧化二氮(N 2 O)来从NO中直接回收能源。在这项工作中,通过在不同的Fe(II)EDTA-NO和有机碳水平下进行短期和长期实验,研究了通过生物NO还原以N 2 O形式增强的能量回收。结果表明,在Fe(II)EDTA-NO浓度高达20 mM时,NO还原酶和N 2 O还原酶均被抑制,后者被更显着地抑制,从而促进了N 2 O的积累。此外,N在碳限制条件下,由于短期实验中的电子竞争,2 O的积累得以增强。高达47.5%的NO–N可以转化为气态N 2 O–N,表示有效的N 2 O回收率。Fe(II)EDTA-NO减少了微生物的多样性,并在长期实验中朝着Fe(II)EDTA-NO减少细菌为主的培养改变了群落结构。能够抵抗Fe(II)EDTA-NO毒性的最丰富的细菌属假单胞菌被大量富集,其相对丰度从1.0增加到70.3%,表明假单胞菌可能是能量回收技术的典型微生物。在基于NO的反硝化中。