当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mechanism and Kinetics of Light Alkane Dehydrogenation and Cracking over Isolated Ga Species in Ga/H-MFI
ACS Catalysis ( IF 11.3 ) Pub Date : 2021-02-02 , DOI: 10.1021/acscatal.0c04906 Neelay M. Phadke 1 , Erum Mansoor 1 , Martin Head-Gordon 2 , Alexis T. Bell 1
ACS Catalysis ( IF 11.3 ) Pub Date : 2021-02-02 , DOI: 10.1021/acscatal.0c04906 Neelay M. Phadke 1 , Erum Mansoor 1 , Martin Head-Gordon 2 , Alexis T. Bell 1
Affiliation
The objective of this study is to examine the mechanisms and kinetics of C2H6 dehydrogenation and n-C4H10 dehydrogenation and cracking over isolated Ga species in Ga/H-MFI and to compare these results to those reported previously for C3H8 dehydrogenation and cracking. C2H6 dehydrogenation is found to be catalyzed by both [GaH]2+ and [GaH2]+ cations at similar turnover frequencies. Rate measurements over Ga/H-MFI containing predominantly [GaH2]+ cations reveal that C2H6 dehydrogenation rates exhibit a Langmuir–Hinshelwood dependence on C2H6 partial pressure at elevated temperatures (>730 K), consistent with the involvement of chemisorbed [C2H5–GaH]+ species. The reaction kinetics suggest that C2H6 dehydrogenation proceeds via heterolytic C–H cleavage of adsorbed C2H6 by [GaH2]+ cations to form H2 and [C2H5–GaH]+ species, which further decompose via β-hydride elimination to form C2H4. By contrast, C4H10 dehydrogenation and both terminal and central cracking are catalyzed exclusively by [GaH]2+ cations. All three reactions exhibit a Langmuir–Hinshelwood dependence on C4H10 partial pressure and are inhibited by H2. Ratios of dehydrogenation to cracking (total) and terminal to central cracking are approximately independent of C4H10 partial pressure consistent with the involvement of a common C4H10-derived surface intermediate. The observed reaction kinetics are consistent with an alkyl-mediated mechanism occurring over [GaH]2+, analogous to that reported previously for C3H8 dehydrogenation/cracking over Ga/H-MFI (Phadke, N. M. ; J. Am. Chem. Soc. 2019, 141, 1614−1627). The mechanism proceeds via facile, heterolytic dissociation of adsorbed C4H10 to form [C4H9–GaH]+–H+ cation pairs via methyl C–H-activated pathways. Dehydrogenation then proceeds via β-hydride elimination, respectively, forming butene, while terminal and central cracking proceed via C–H-activated H+ attack. Methylene activation was also considered but found to occur at a significantly lower rate. Theoretical analysis of the proposed reaction pathways leads to apparent activation enthalpies in good agreement with values extracted from the measured kinetics, thereby supporting the proposed pathways and the roles of [GaH]2+ and [GaH2]+ cations in the dehydrogenation and cracking of light alkanes on Ga/H-MFI.
中文翻译:
Ga / H-MFI中孤立Ga物种的轻链烷烃脱氢裂化的机理和动力学
这项研究的目的是检查在Ga / H-MFI中分离的Ga物种上C 2 H 6脱氢和n -C 4 H 10脱氢和裂解的机理和动力学,并将这些结果与先前报道的C 3进行比较。 H 8脱氢裂化。发现C 2 H 6脱氢由[GaH] 2+和[GaH 2 ] +阳离子以相似的转换频率催化。在主要包含[GaH 2 ] +阳离子的Ga / H-MFI上的速率测量表明,C2 H 6脱氢速率在升高的温度(> 730 K)下表现出Langmuir–Hinshelwood对C 2 H 6分压的依赖性,这与化学吸附的[C 2 H 5 –GaH] +物质的参与一致。反应动力学表明,C 2 H 6脱氢是通过[GaH 2 ] +阳离子将吸附的C 2 H 6进行杂合的C–H裂解,形成H 2和[C 2 H 5 –GaH] +来进行的。种类,其通过β-氢化物消除进一步分解形成C 2 H 4。相反,C 4 H 10脱氢以及末端和中心裂化都仅由[GaH] 2+阳离子催化。这三个反应均表现出Langmuir-Hinshelwood对C 4 H 10分压的依赖性,并被H 2抑制。脱氢与裂化的比例(总)与末端裂化与中心裂化的比率与C 4 H 10的分压近似无关,而C 4 H 10的分压与常见的C 4 H 10的参与一致衍生的表面中间体。观察到的反应动力学与在[GaH] 2+上发生的烷基介导机理相一致,类似于先前报道的在Ga / H-MFI上进行C 3 H 8脱氢/裂解的机理(新墨西哥法克 ; J.上午 化学 Soc。 2019,141,1614年至1627年)。该机制通过吸附的C 4 H 10通过甲基C–H激活的途径容易地,杂化解离形成[C 4 H 9 –GaH] + –H +阳离子对而进行。脱氢然后分别通过β-氢化物消除进行,形成丁烯,而末端和中心裂化通过C–H活化的H +进行。攻击。还考虑了亚甲基活化,但是发现其发生率显着降低。对拟议的反应途径的理论分析导致表观活化焓与从测得的动力学中提取的值高度吻合,从而支持了拟议的途径以及[GaH] 2+和[GaH 2 ] +阳离子在脱氢和裂解中的作用。 Ga / H-MFI上的轻烷烃。
更新日期:2021-02-19
中文翻译:
Ga / H-MFI中孤立Ga物种的轻链烷烃脱氢裂化的机理和动力学
这项研究的目的是检查在Ga / H-MFI中分离的Ga物种上C 2 H 6脱氢和n -C 4 H 10脱氢和裂解的机理和动力学,并将这些结果与先前报道的C 3进行比较。 H 8脱氢裂化。发现C 2 H 6脱氢由[GaH] 2+和[GaH 2 ] +阳离子以相似的转换频率催化。在主要包含[GaH 2 ] +阳离子的Ga / H-MFI上的速率测量表明,C2 H 6脱氢速率在升高的温度(> 730 K)下表现出Langmuir–Hinshelwood对C 2 H 6分压的依赖性,这与化学吸附的[C 2 H 5 –GaH] +物质的参与一致。反应动力学表明,C 2 H 6脱氢是通过[GaH 2 ] +阳离子将吸附的C 2 H 6进行杂合的C–H裂解,形成H 2和[C 2 H 5 –GaH] +来进行的。种类,其通过β-氢化物消除进一步分解形成C 2 H 4。相反,C 4 H 10脱氢以及末端和中心裂化都仅由[GaH] 2+阳离子催化。这三个反应均表现出Langmuir-Hinshelwood对C 4 H 10分压的依赖性,并被H 2抑制。脱氢与裂化的比例(总)与末端裂化与中心裂化的比率与C 4 H 10的分压近似无关,而C 4 H 10的分压与常见的C 4 H 10的参与一致衍生的表面中间体。观察到的反应动力学与在[GaH] 2+上发生的烷基介导机理相一致,类似于先前报道的在Ga / H-MFI上进行C 3 H 8脱氢/裂解的机理(