Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Three-Dimensional MOFs@MXene Aerogel Composite Derived MXene Threaded Hollow Carbon Confined CoS Nanoparticles toward Advanced Alkali-Ion Batteries
ACS Nano ( IF 15.8 ) Pub Date : 2021-01-28 , DOI: 10.1021/acsnano.0c09898 Long Yao 1 , Qinfen Gu 2 , Xuebin Yu 1
ACS Nano ( IF 15.8 ) Pub Date : 2021-01-28 , DOI: 10.1021/acsnano.0c09898 Long Yao 1 , Qinfen Gu 2 , Xuebin Yu 1
Affiliation
MXene combining high metal-like conductivity, high hydrophilicity, and abundant surface functional groups has been recognized as a class of versatile two-dimensional materials for many applications. However, the aggregation of MXene nanosheets from interlayer van der Waals force and hydrogen bonds represents a major problem that severely limits their practical use. Here, we report an aerogel structure of MOFs@MXene, in which the in situ formed MOF particles can effectively prevent the accumulation of MXene, enabling a three-dimensional (3D) hierarchical porous conductive network to be composed with an ultralight feature. Subsequently, a 3D porous MXene aerogel threaded hollow CoS nanobox composite ((CoS NP@NHC)@MXene) derived from the MOFs@MXene aerogel precursor was synthesized, and the highly interconnected MXene network and hierarchical porous structure coupled with the ultrafine nanocrystallization of the electrochemically active phase of CoS yield the hybrid system with excellent electron and ion transport properties. Benefiting from the synergistic effect of the components, the (CoS NP@NHC)@MXene composite manifests outstanding electrochemistry properties as electrode materials for all of the lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and potassium-ion batteries (PIBs). It demonstrated the excellent cycle stability and high capacities of 1145.9 mAh g–1 at 1 A g–1 after 800 cycles and 574.1 mAh g–1 at 5 A g–1 after 1000 cycles for LIBs, 420 mAh g–1 at 2 A g–1 after 650 cycles for SIBs, and 210 mAh g–1 at 2 A g–1 after 500 cycles for PIBs. First-principle calculations confirmed that the (CoS NP@NHC)@MXene hybrid could enhance the charge transfer reaction kinetics, particularly at the interface. More importantly, the excellent rate performance under high mass loading and the high volumetric energy and power density of the entire electrode represent the potential of (CoS NP@NHC)@MXene composites for applications to practical electrochemical energy storage devices. The synthesis method reported in this Article is versatile and can be easily extended to produce other porous MXene-aerogel-based materials for various applications.
中文翻译:
三维MOFs @ MXene气凝胶复合材料衍生的MXene螺纹空心碳受限CoS纳米颗粒,用于高级碱性离子电池
结合了高金属样导电性,高亲水性和丰富的表面官能团的MXene已被公认为是一类在许多应用中用途广泛的二维材料。然而,来自层间范德华力和氢键的MXene纳米片的聚集代表了严重限制其实际使用的主要问题。在这里,我们报告了MOFs @ MXene的气凝胶结构,其中原位形成的MOF颗粒可有效防止MXene的积聚,从而使三维(3D)分层多孔导电网络具有超轻特征。随后,合成了由MOFs @ MXene气凝胶前体衍生的3D多孔MXene气凝胶螺纹中空CoS纳米盒复合材料((CoS NP @ NHC)@MXene),并且高度互连的MXene网络和分层多孔结构与超细纳米晶化相结合。 CoS的电化学活性相产生具有优异的电子和离子传输性能的混合系统。受益于各成分的协同作用,(CoS NP @ NHC)@MXene复合材料作为所有锂离子电池(LIB),钠离子电池(SIB),和钾离子电池(PIB)。它表现出出色的循环稳定性和1145.9 mAh g的高容量-1 1个A G -1后800个循环和574.1毫安克-1在5 A G -1 1000次循环后为LIBS,420毫安克-1以2A克-1后650个循环的SIB,和210毫安克–1在2 A g –1PIB经过500次循环后。第一性原理计算证实,(CoS NP @ NHC)@MXene杂化物可以增强电荷转移反应动力学,特别是在界面处。更重要的是,在高质量负载下优异的速率性能以及整个电极的高体积能量和功率密度代表了(CoS NP @ NHC)@MXene复合材料在实际电化学能量存储设备中的应用潜力。本文报道的合成方法用途广泛,可以轻松扩展以生产用于各种应用的其他多孔MXene-气凝胶基材料。
更新日期:2021-02-23
中文翻译:
三维MOFs @ MXene气凝胶复合材料衍生的MXene螺纹空心碳受限CoS纳米颗粒,用于高级碱性离子电池
结合了高金属样导电性,高亲水性和丰富的表面官能团的MXene已被公认为是一类在许多应用中用途广泛的二维材料。然而,来自层间范德华力和氢键的MXene纳米片的聚集代表了严重限制其实际使用的主要问题。在这里,我们报告了MOFs @ MXene的气凝胶结构,其中原位形成的MOF颗粒可有效防止MXene的积聚,从而使三维(3D)分层多孔导电网络具有超轻特征。随后,合成了由MOFs @ MXene气凝胶前体衍生的3D多孔MXene气凝胶螺纹中空CoS纳米盒复合材料((CoS NP @ NHC)@MXene),并且高度互连的MXene网络和分层多孔结构与超细纳米晶化相结合。 CoS的电化学活性相产生具有优异的电子和离子传输性能的混合系统。受益于各成分的协同作用,(CoS NP @ NHC)@MXene复合材料作为所有锂离子电池(LIB),钠离子电池(SIB),和钾离子电池(PIB)。它表现出出色的循环稳定性和1145.9 mAh g的高容量-1 1个A G -1后800个循环和574.1毫安克-1在5 A G -1 1000次循环后为LIBS,420毫安克-1以2A克-1后650个循环的SIB,和210毫安克–1在2 A g –1PIB经过500次循环后。第一性原理计算证实,(CoS NP @ NHC)@MXene杂化物可以增强电荷转移反应动力学,特别是在界面处。更重要的是,在高质量负载下优异的速率性能以及整个电极的高体积能量和功率密度代表了(CoS NP @ NHC)@MXene复合材料在实际电化学能量存储设备中的应用潜力。本文报道的合成方法用途广泛,可以轻松扩展以生产用于各种应用的其他多孔MXene-气凝胶基材料。