当前位置:
X-MOL 学术
›
Small Methods
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interface Engineering of Flexible Piezoresistive Sensors via Near‐Field Electrospinning Processed Spacer Layers
Small Methods ( IF 10.7 ) Pub Date : 2021-01-29 , DOI: 10.1002/smtd.202000842 Yan Huang 1 , Xiangyu You 2 , Zhiqiang Tang 3 , Kai-Yu Tong 3 , Ping Guo 4 , Ni Zhao 1
Small Methods ( IF 10.7 ) Pub Date : 2021-01-29 , DOI: 10.1002/smtd.202000842 Yan Huang 1 , Xiangyu You 2 , Zhiqiang Tang 3 , Kai-Yu Tong 3 , Ping Guo 4 , Ni Zhao 1
Affiliation
The interface contact between the active material and its neighboring metal electrodes dominates the sensing response of mainstream high‐sensitivity piezoresistive pressure sensors. However, the properties of such interface are often difficult to control and preserve owing to the limited strategies to precisely engineer the surface structure and mechanical property of the active material. Here, a top‐down fabrication method to create a grid‐like polyurethane fiber‐based spacer layer at the interface between a piezoresistive layer and its contact electrodes is proposed. The tuning of the period and thickness of the spacer layer is conveniently achieved by a programmable near‐field electrospinning process, and the influence of the spacer structure on the sensing performance is systematically investigated. The sensor with the optimized spacer layer shows a widened sensing range (230 kPa) while maintaining a high sensitivity (1.91 kPa−1). Furthermore, the output current fluctuation of the sensors during a 74 000‐cycle test is drastically reduced from 14.28% (without a spacer) to 3.63% (with a spacer), demonstrating greatly enhanced long‐term reliability. The new near‐field electrospinning‐based strategy is capable of tuning sensor responses without changing the active material, providing a universal and scalable path to engineer the performances of contact‐dominant sensors.
中文翻译:
通过近场静电纺丝处理间隔层实现柔性压阻传感器的界面工程
活性材料与其相邻金属电极之间的界面接触主导了主流高灵敏度压阻式压力传感器的传感响应。然而,由于精确设计活性材料的表面结构和机械性能的策略有限,这种界面的性能通常难以控制和保持。在这里,提出了一种自上而下的制造方法,用于在压阻层与其接触电极之间的界面处创建网格状聚氨酯纤维基间隔层。通过可编程的近场静电纺丝工艺可以方便地实现间隔层的周期和厚度的调整,并系统地研究了间隔结构对传感性能的影响。-1 )。此外,传感器在 74 000 次循环测试期间的输出电流波动从 14.28%(无垫片)大幅降低至 3.63%(有垫片),证明长期可靠性大大增强。新的基于近场静电纺丝的策略能够在不改变活性材料的情况下调整传感器响应,为设计接触主导传感器的性能提供了通用且可扩展的途径。
更新日期:2021-01-29
中文翻译:
通过近场静电纺丝处理间隔层实现柔性压阻传感器的界面工程
活性材料与其相邻金属电极之间的界面接触主导了主流高灵敏度压阻式压力传感器的传感响应。然而,由于精确设计活性材料的表面结构和机械性能的策略有限,这种界面的性能通常难以控制和保持。在这里,提出了一种自上而下的制造方法,用于在压阻层与其接触电极之间的界面处创建网格状聚氨酯纤维基间隔层。通过可编程的近场静电纺丝工艺可以方便地实现间隔层的周期和厚度的调整,并系统地研究了间隔结构对传感性能的影响。-1 )。此外,传感器在 74 000 次循环测试期间的输出电流波动从 14.28%(无垫片)大幅降低至 3.63%(有垫片),证明长期可靠性大大增强。新的基于近场静电纺丝的策略能够在不改变活性材料的情况下调整传感器响应,为设计接触主导传感器的性能提供了通用且可扩展的途径。