当前位置:
X-MOL 学术
›
J. Mater. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Polydopamine grafted cross-linked polyacrylamide as robust binder for SiO/C anode toward high-stability lithium-ion battery
Journal of Materials Science ( IF 3.5 ) Pub Date : 2021-01-03 , DOI: 10.1007/s10853-020-05658-4 Nan Liu , Wenjie He , Haojie Liao , Zhiwei Li , Jiangmin Jiang , Xiaogang Zhang , Hui Dou
Journal of Materials Science ( IF 3.5 ) Pub Date : 2021-01-03 , DOI: 10.1007/s10853-020-05658-4 Nan Liu , Wenjie He , Haojie Liao , Zhiwei Li , Jiangmin Jiang , Xiaogang Zhang , Hui Dou
Silicon-based materials, as the most promising candidates for high-performance lithium-ion batteries (LIBs), have been widely researched. However, the construction of stable electrode structure is still a challenge due to the enormous volume variation. Herein, we developed a three-dimensional (3D) binder network, polydopamine grafted cross-linked polyacrylamide (PDA-c-PAM), to build a durable anode for LIBs. The flexible PDA side chain in PDA-c-PAM offers the superior adhesion with constitutes of the electrode. And the 3D cross-linked PAM main chain endows PDA-c-PAM high stretchability to accommodate the volume variation of active material and maintain the structural integrity of electrode. As a binder for SiO/graphite (SiO/C), the fabricated SiO/C@PDA-c-PAM anode delivers an initial discharge capacity of 1350 mAh g−1 at 0.1 A g−1. At a high current density of 1 A g−1, it maintains 591 mAh g−1 after 300 cycles with a 94% capacity retention of initial capacity after activation. Coupled with commercial LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode, the full cell exhibits a high-energy density of 406 Wh kg−1 at 1 C as well as excellent stability. Thus, it is believed that designing 3D network binder is an effective approach to achieve superior cycle performance of SiO/C electrodes. We successfully synthesized a polydopamine grafted cross-linked polyacrylamide (PDA-c-PAM) polymer as binder for SiO/C anode to maintain the structural integrity and improve the cycling stability of electrode. The flexible PDA side chain in PDA-c-PAM offers the binder superior adhesion. And the 3D cross-linked PAM main chain endows the binder high stretchability. The fabricated SiO/C@PDA-c-PAM anode delivers a capacity of 591 mAh g−1 after 300 cycles at 1 A g−1. Thus, it is believed that designing 3D network binder is an effective approach to achieve superior cycle performance of SiO/C electrodes.
中文翻译:
聚多巴胺接枝交联聚丙烯酰胺作为 SiO/C 负极高稳定性锂离子电池的强力粘合剂
硅基材料作为高性能锂离子电池(LIBs)的最有前途的候选材料,已被广泛研究。然而,由于巨大的体积变化,构建稳定的电极结构仍然是一个挑战。在此,我们开发了一种三维 (3D) 粘合剂网络,即聚多巴胺接枝交联聚丙烯酰胺 (PDA-c-PAM),以构建 LIB 的耐用阳极。PDA-c-PAM 中的柔性 PDA 侧链为电极结构提供了优异的附着力。3D 交联的 PAM 主链赋予 PDA-c-PAM 高拉伸性,以适应活性材料的体积变化并保持电极的结构完整性。作为 SiO/石墨 (SiO/C) 的粘合剂,制备的 SiO/C@PDA-c-PAM 负极在 0.1 A g-1 下的初始放电容量为 1350 mAh g-1。在 1 A g-1 的高电流密度下,它在 300 次循环后保持 591 mAh g-1,活化后初始容量的容量保持率为 94%。与商用 LiNi0.6Co0.2Mn0.2O2 (NCM622) 阴极相结合,全电池在 1 C 下表现出 406 Wh kg-1 的高能量密度以及出色的稳定性。因此,相信设计 3D 网络粘合剂是实现 SiO/C 电极优异循环性能的有效方法。我们成功合成了聚多巴胺接枝的交联聚丙烯酰胺 (PDA-c-PAM) 聚合物作为 SiO/C 负极的粘合剂,以保持结构完整性并提高电极的循环稳定性。PDA-c-PAM 中灵活的 PDA 侧链为粘合剂提供了卓越的附着力。并且3D交联的PAM主链赋予粘合剂高拉伸性。制备的 SiO/C@PDA-c-PAM 负极在 1 A g-1 下循环 300 次后可提供 591 mAh g-1 的容量。因此,相信设计 3D 网络粘合剂是实现 SiO/C 电极优异循环性能的有效方法。
更新日期:2021-01-03
中文翻译:
聚多巴胺接枝交联聚丙烯酰胺作为 SiO/C 负极高稳定性锂离子电池的强力粘合剂
硅基材料作为高性能锂离子电池(LIBs)的最有前途的候选材料,已被广泛研究。然而,由于巨大的体积变化,构建稳定的电极结构仍然是一个挑战。在此,我们开发了一种三维 (3D) 粘合剂网络,即聚多巴胺接枝交联聚丙烯酰胺 (PDA-c-PAM),以构建 LIB 的耐用阳极。PDA-c-PAM 中的柔性 PDA 侧链为电极结构提供了优异的附着力。3D 交联的 PAM 主链赋予 PDA-c-PAM 高拉伸性,以适应活性材料的体积变化并保持电极的结构完整性。作为 SiO/石墨 (SiO/C) 的粘合剂,制备的 SiO/C@PDA-c-PAM 负极在 0.1 A g-1 下的初始放电容量为 1350 mAh g-1。在 1 A g-1 的高电流密度下,它在 300 次循环后保持 591 mAh g-1,活化后初始容量的容量保持率为 94%。与商用 LiNi0.6Co0.2Mn0.2O2 (NCM622) 阴极相结合,全电池在 1 C 下表现出 406 Wh kg-1 的高能量密度以及出色的稳定性。因此,相信设计 3D 网络粘合剂是实现 SiO/C 电极优异循环性能的有效方法。我们成功合成了聚多巴胺接枝的交联聚丙烯酰胺 (PDA-c-PAM) 聚合物作为 SiO/C 负极的粘合剂,以保持结构完整性并提高电极的循环稳定性。PDA-c-PAM 中灵活的 PDA 侧链为粘合剂提供了卓越的附着力。并且3D交联的PAM主链赋予粘合剂高拉伸性。制备的 SiO/C@PDA-c-PAM 负极在 1 A g-1 下循环 300 次后可提供 591 mAh g-1 的容量。因此,相信设计 3D 网络粘合剂是实现 SiO/C 电极优异循环性能的有效方法。