当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Visualizing Quantum Coherence Based on Single-Molecule Coherent Modulation Microscopy
Nano Letters ( IF 9.6 ) Pub Date : 2021-01-28 , DOI: 10.1021/acs.nanolett.0c04626 Haitao Zhou 1, 2 , Chengbing Qin 1 , Shuangping Han 1 , Lei Zhang 1 , Ruiyun Chen 1 , Guofeng Zhang 1 , Yaoming Liu 3 , Zhifang Wu 2 , Sijin Li 2 , Liantuan Xiao 1 , Suotang Jia 1
Nano Letters ( IF 9.6 ) Pub Date : 2021-01-28 , DOI: 10.1021/acs.nanolett.0c04626 Haitao Zhou 1, 2 , Chengbing Qin 1 , Shuangping Han 1 , Lei Zhang 1 , Ruiyun Chen 1 , Guofeng Zhang 1 , Yaoming Liu 3 , Zhifang Wu 2 , Sijin Li 2 , Liantuan Xiao 1 , Suotang Jia 1
Affiliation
Massive magical phenomena in nature are closely related to quantum effects at the microscopic scale. However, the lack of straightforward methods to observe the quantum coherent dynamics in integrated biological systems limits the study of essential biological mechanisms. In this work, we developed a single-molecule coherent modulation (SMCM) microscopy by combining the superior features of single-molecule microscopy with ultrafast spectroscopy. By introducing the modem technology and defining the coherent visibility, we realized visualization and real-time observation of the decoherence process of a single molecule influenced by the microenvironment for the first time. In particular, we applied this technique to observe the quantum coherent properties of the entire chlorella cells and found the correlation between the coherent visibility and metabolic activities, which may have potential applications in molecular diagnostics and precision medicine.
中文翻译:
基于单分子相干调制显微镜的量子相干可视化
自然界中巨大的魔术现象与微观尺度上的量子效应密切相关。然而,缺乏直接的方法来观察集成生物系统中的量子相干动力学限制了基本生物学机制的研究。在这项工作中,我们结合了单分子显微镜的卓越功能和超快光谱技术,开发了单分子相干调制(SMCM)显微镜。通过引入现代技术并定义相干可见性,我们首次实现了对受微环境影响的单个分子的去相干过程的可视化和实时观察。特别是,
更新日期:2021-02-10
中文翻译:
基于单分子相干调制显微镜的量子相干可视化
自然界中巨大的魔术现象与微观尺度上的量子效应密切相关。然而,缺乏直接的方法来观察集成生物系统中的量子相干动力学限制了基本生物学机制的研究。在这项工作中,我们结合了单分子显微镜的卓越功能和超快光谱技术,开发了单分子相干调制(SMCM)显微镜。通过引入现代技术并定义相干可见性,我们首次实现了对受微环境影响的单个分子的去相干过程的可视化和实时观察。特别是,