当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Singlet Fission Dynamics in the 5,12-Bis(phenylethynyl)tetracene Thin Film
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2021-01-26 , DOI: 10.1021/acs.jpcc.0c05382
Amitabha Nandi 1, 2 , Biswajit Manna 1 , Rajib Ghosh 1
Affiliation  

The singlet fission (SF) process is a promising route to overcome the Shockley and Quiesser efficiency limit of organic solar cells and hence has attracted significant research interest in the recent past. Efficient SF in low-cost organic materials with broad visible absorption is desirable to potentially boost organic solar cell efficiency. Herein, we report the ultrafast and efficient SF property of a new molecular material, namely, the 5,12-bis(phenylethynyl)tetracene (BPET) thin film. Steady-state and time-resolved optical studies on the thin film of BPET revealed prompt deactivation of majority of singlet excitons with a lifetime of about 1.0 ps. Detailed analysis of transient spectral features suggests ultrafast relaxation of the singlet exciton to correlated triplet pair formation within 200 fs followed by free triplet exciton generation on the picosecond time scale. However, a slower SF component is also identified originating from the amorphous phase in the thin-film sample. Overall, high SF yield (∼90%) with long-lived triplet (∼3 ms) is estimated from spectroscopic measurements. Efficient SF in BPET as compared to parent tetracene is attributed as the influence of phenylethynyl substituents to alter the energy levels and intermolecular coupling. Wide spectral coverage of visible absorption, solution processability, and high triplet yield (∼180%) by the SF process are expected to make BPET a suitable candidate in SF-based organic solar cells.

中文翻译:

5,12-双(苯基乙炔基)并四苯薄膜的单线态裂变动力学

单线裂变(SF)工艺是克服有机太阳能电池的Shockley和Quiesser效率极限的一种有前途的途径,因此在最近的几年中引起了广泛的研究兴趣。需要低成本的有机材料中具有广泛可见吸收的高效SF,以潜在地提高有机太阳能电池的效率。本文中,我们报告了一种新型的分子材料即5,12-双(苯基乙炔基)并四苯(BPET)薄膜的超快和高效的SF性能。在BPET薄膜上进行的稳态和时间分辨光学研究表明,大多数单重态激子迅速失活,寿命约为1.0 ps。瞬态光谱特征的详细分析表明,单重态激子可在200 fs内超快弛豫,从而形成相关的三重态对,随后在皮秒级产生自由三重态激子。但是,还发现较慢的SF成分源自薄膜样品中的非晶相。总体而言,通过光谱测量可以估算出具有长寿命三重态(〜3 ms)的高SF收率(〜90%)。与母体并四苯相比,BPET中有效的SF归因于苯乙炔基取代基改变能级和分子间偶联的影响。通过SF工艺,可见光吸收,溶液可加工性和高三重态产率(〜180%)的宽光谱范围有望使BPET成为基于SF的有机太阳能电池的合适候选材料。还可以识别出较慢的SF成分,该成分源自薄膜样品中的非晶相。总体而言,通过光谱测量可以估算出具有长寿命三重态(〜3 ms)的高SF收率(〜90%)。与母体并四苯相比,BPET中有效的SF归因于苯乙炔基取代基改变能级和分子间偶联的影响。通过SF工艺,可见光吸收,溶液可加工性和高三重态产率(〜180%)的宽光谱范围有望使BPET成为基于SF的有机太阳能电池的合适候选材料。还可以识别出较慢的SF成分,该成分源自薄膜样品中的非晶相。总体而言,通过光谱测量可以估算出具有长寿命三重态(〜3 ms)的高SF收率(〜90%)。与母体并四苯相比,BPET中有效的SF归因于苯乙炔基取代基改变能级和分子间偶联的影响。通过SF工艺,可见光吸收,溶液可加工性和高三重态产率(〜180%)的宽光谱范围有望使BPET成为基于SF的有机太阳能电池的合适候选材料。与母体并四苯相比,BPET中有效的SF归因于苯乙炔基取代基改变能级和分子间偶联的影响。通过SF工艺,可见光吸收,溶液可加工性和高三重态产率(〜180%)的宽光谱范围有望使BPET成为基于SF的有机太阳能电池的合适候选材料。与母体并四苯相比,BPET中有效的SF归因于苯乙炔基取代基改变能级和分子间偶联的影响。通过SF工艺,可见光吸收,溶液可加工性和高三重态产率(〜180%)的宽光谱范围有望使BPET成为基于SF的有机太阳能电池的合适候选材料。
更新日期:2021-02-04
down
wechat
bug