Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Transfer-Free Synthesis of Atomically Precise Graphene Nanoribbons on Insulating Substrates
ACS Nano ( IF 15.8 ) Pub Date : 2021-01-25 , DOI: 10.1021/acsnano.0c07591 Zafer Mutlu 1, 2 , Juan Pablo Llinas 1, 2 , Peter H. Jacobse 3 , Ilya Piskun 4 , Raymond Blackwell 4 , Michael F. Crommie 3, 5, 6 , Felix R. Fischer 4, 5, 6 , Jeffrey Bokor 1, 5
ACS Nano ( IF 15.8 ) Pub Date : 2021-01-25 , DOI: 10.1021/acsnano.0c07591 Zafer Mutlu 1, 2 , Juan Pablo Llinas 1, 2 , Peter H. Jacobse 3 , Ilya Piskun 4 , Raymond Blackwell 4 , Michael F. Crommie 3, 5, 6 , Felix R. Fischer 4, 5, 6 , Jeffrey Bokor 1, 5
Affiliation
The rational bottom-up synthesis of graphene nanoribbons (GNRs) provides atomically precise control of widths and edges that give rise to a wide range of electronic properties promising for electronic devices such as field-effect transistors (FETs). Since the bottom-up synthesis commonly takes place on catalytic metallic surfaces, the integration of GNRs into such devices requires their transfer onto insulating substrates, which remains one of the bottlenecks in the development of GNR-based electronics. Herein, we report on a method for the transfer-free placement of GNRs on insulators. This involves growing GNRs on a gold film deposited onto an insulating layer followed by gentle wet etching of the gold, which leaves the nanoribbons to settle in place on the underlying insulating substrate. Scanning tunneling microscopy and Raman spectroscopy confirm that atomically precise GNRs of high density uniformly grow on the gold films deposited onto SiO2/Si substrates and remain structurally intact after the etching process. We have also demonstrated transfer-free fabrication of ultrashort channel GNR FETs using this process. A very important aspect of the present work is that the method can scale up well to 12 in. wafers, which is extremely difficult for previous techniques. Our work here thus represents an important step toward large-scale integration of GNRs into electronic devices.
中文翻译:
在绝缘基底上无转移合成原子精确石墨烯纳米带
石墨烯纳米带(GNR)的合理的自下而上的合成提供了对宽度和边缘的原子精确控制,从而产生了广泛的电子性能,有望用于电子器件,例如场效应晶体管(FET)。由于自下而上的合成通常在催化金属表面上进行,因此将GNR集成到此类设备中需要将它们转移到绝缘基板上,这仍然是基于GNR的电子产品开发的瓶颈之一。在这里,我们报告了一种用于绝缘子上GNR的无转移放置的方法。这涉及在沉积到绝缘层上的金膜上生长GNR,然后对金进行轻柔的湿法蚀刻,这将纳米带留在下面的绝缘基板上。2 / Si基板,并且在蚀刻过程后保持结构完整。我们还演示了使用该工艺无转移制造超短通道GNR FET。当前工作的一个非常重要的方面是该方法可以按比例放大到12英寸晶圆,这对于以前的技术来说非常困难。因此,我们在这里的工作代表了将GNR大规模集成到电子设备中的重要一步。
更新日期:2021-02-23
中文翻译:
在绝缘基底上无转移合成原子精确石墨烯纳米带
石墨烯纳米带(GNR)的合理的自下而上的合成提供了对宽度和边缘的原子精确控制,从而产生了广泛的电子性能,有望用于电子器件,例如场效应晶体管(FET)。由于自下而上的合成通常在催化金属表面上进行,因此将GNR集成到此类设备中需要将它们转移到绝缘基板上,这仍然是基于GNR的电子产品开发的瓶颈之一。在这里,我们报告了一种用于绝缘子上GNR的无转移放置的方法。这涉及在沉积到绝缘层上的金膜上生长GNR,然后对金进行轻柔的湿法蚀刻,这将纳米带留在下面的绝缘基板上。2 / Si基板,并且在蚀刻过程后保持结构完整。我们还演示了使用该工艺无转移制造超短通道GNR FET。当前工作的一个非常重要的方面是该方法可以按比例放大到12英寸晶圆,这对于以前的技术来说非常困难。因此,我们在这里的工作代表了将GNR大规模集成到电子设备中的重要一步。