当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2021-01-23 , DOI: 10.1016/j.cej.2021.128649
Mengjuan Zhong , Lijuan Zhang , Xu Liu , Yaning Zhou , Maoyi Zhang , Yangjian Wang , Lu Yang , Di Wei

Flexible pressure sensors have promising applications in wearable electronic devices. However, fabricating flexible pressure sensors with wide linear range and high sensitivity remain a great challenge. Herein, a micro-nano hybrid conductive elastomer film based on carbon materials with arched micro-patterns array on surface (P-HCF) is developed to show expected sensing properties through a sustainable route. The 1D carbon fibers (CFs) and 0D carbon nanoparticles (CNPs) were incorporated into polydimethylsiloxane (PDMS) matrix to construct a 3D conductive network consisting of physical contact and tunneling effect among carbon materials to improve the sensing range and sensitivity. The arched micro-patterns of the P-HCF, which is designed mimicking the human fingerprints, influences the pressure distribution inside the material, giving rise to a linear sensitivity over the whole sensing range. Finite element analysis (FEA) method is investigated to simulate and analyze the compression process. The P-HCF sensor exhibits both a high sensitivity of 26.6 kPa−1 and an exceptionally wide linear range of 20 Pa − 600 kPa. The devices were demonstrated in monitoring artery pulses, assisting in diagnosing Parkinson’s disease, and analyzing gait for healthcare. Furthermore, the sensors are integrated into complex devices to realize pressure distribution detection, controlling manipulator, and operating PC games. The attainment of excellent pressure sensing performance of the P-HCF, potentially initiates vast applications in health monitoring and human-machine interfaces.



中文翻译:

基于多级传感过程的宽线性范围和高灵敏度柔性压力传感器,用于健康监测和人机界面

柔性压力传感器在可穿戴电子设备中具有广阔的应用前景。然而,制造具有宽线性范围和高灵敏度的柔性压力传感器仍然是巨大的挑战。本文中,基于碳材料的微纳米杂化导电弹性体膜被开发出来,该碳纳米管表面具有拱形微图案阵列(P-HCF),以通过可持续的途径显示出预期的传感特性。将1D碳纤维(CFs)和0D碳纳米颗粒(CNP)掺入聚二甲基硅氧烷(PDMS)基质中,以构建由碳材料之间的物理接触和隧穿效应组成的3D导电网络,以改善感测范围和灵敏度。P-HCF的拱形微图案模仿人体指纹设计,会影响材料内部的压力分布,在整个感应范围内产生线性灵敏度。研究了有限元分析(FEA)方法来模拟和分析压缩过程。P-HCF传感器同时具有26.6 kPa的高灵敏度-1和20 Pa-600 kPa的超宽线性范围。该设备在监视动脉搏动,辅助诊断帕金森氏病和分析步态以进行保健方面得到了证明。此外,这些传感器被集成到复杂的设备中,以实现压力分布检测,控制操纵器和操作PC游戏。P-HCF出色的压力感测性能的实现,有可能在健康监测和人机界面中引发广泛的应用。

更新日期:2021-02-04
down
wechat
bug