Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Heterostructure Engineering of Core‐Shelled Sb@Sb2O3 Encapsulated in 3D N‐Doped Carbon Hollow‐Spheres for Superior Sodium/Potassium Storage
Small ( IF 13.0 ) Pub Date : 2021-01-20 , DOI: 10.1002/smll.202006824 Bochao Chen 1 , Lizhuang Yang 1 , Xiangren Bai 1 , Qingzhao Wu 1 , Ming Liang 1 , Yuxuan Wang 1 , Naiqin Zhao 1, 2, 3 , Chunsheng Shi 1 , Baozeng Zhou 4 , Chunnian He 1, 2, 3, 5
Small ( IF 13.0 ) Pub Date : 2021-01-20 , DOI: 10.1002/smll.202006824 Bochao Chen 1 , Lizhuang Yang 1 , Xiangren Bai 1 , Qingzhao Wu 1 , Ming Liang 1 , Yuxuan Wang 1 , Naiqin Zhao 1, 2, 3 , Chunsheng Shi 1 , Baozeng Zhou 4 , Chunnian He 1, 2, 3, 5
Affiliation
In this work, the core‐shelled Sb@Sb2O3 heterostructure encapsulated in 3D N‐doped carbon hollow‐spheres is fabricated by spray‐drying combined with heat treatment. The novel core‐shelled heterostructures of Sb@Sb2O3 possess a mass of heterointerfaces, which formed spontaneously at the core‐shell contact via annealing oxidation and can promote the rapid Na+/K+ transfer. The density functional theory calculations revealed the mechanism and significance of Na/K‐storage for the core‐shelled Sb@Sb2O3 heterostructure, which validated that the coupling between the high‐conductivity of Sb and the stability of Sb2O3 can relieve the shortcomings of the individual building blocks, thereby enhancing the Na/K‐storage capacity. Furthermore, the core‐shell structure embedded in the 3D carbon framework with robust structure can further increase the electrode mechanical strength and thus buffer the severe volume changes upon cycling. As a result, such composite architecture exhibited a high specific capacity of ≈573 mA h g−1 for sodium‐ion battery (SIB) anode and ≈474 mA h g−1 for potassium‐ion battery (PIB) anode at 100 mA g−1, and superior rate performance (302 mA h g−1 at 30 A g−1 for SIB anode, while 239 mA h g−1 at 5 A g−1 for PIB anode).
中文翻译:
核壳Sb @ Sb2O3封装在3D N掺杂碳空心球中的异质结构工程,可用于出色的钠/钾存储
在这项工作中,封装在3D N掺杂碳空心球中的核壳Sb @ Sb 2 O 3异质结构是通过喷雾干燥与热处理相结合制成的。Sb @ Sb 2 O 3的新型核壳异质结构具有大量的异质界面,这些异质界面通过退火氧化在核壳接触处自发形成,并可以促进Na + / K +的快速转移。密度泛函理论计算揭示了核壳Sb @ Sb 2 O 3异质结构Na / K储存的机理和意义,验证了Sb高电导率与Sb 2稳定性之间的耦合。O 3可以缓解单个构造块的缺点,从而提高Na / K存储容量。此外,嵌入3D碳框架中且具有坚固结构的核壳结构可以进一步提高电极的机械强度,从而缓冲循环时剧烈的体积变化。其结果是,这样的复合结构表现出≈573毫安Hg的高比容量-1为钠离子电池(SIB)阳极和≈474毫安汞柱-1在100mA克为钾离子电池(PIB)阳极-1,以及更高的速率性能(SIB阳极在30 A g -1时为302 mA hg -1,而PIB阳极在5 A g -1时为239 mA hg -1)。
更新日期:2021-02-11
中文翻译:
核壳Sb @ Sb2O3封装在3D N掺杂碳空心球中的异质结构工程,可用于出色的钠/钾存储
在这项工作中,封装在3D N掺杂碳空心球中的核壳Sb @ Sb 2 O 3异质结构是通过喷雾干燥与热处理相结合制成的。Sb @ Sb 2 O 3的新型核壳异质结构具有大量的异质界面,这些异质界面通过退火氧化在核壳接触处自发形成,并可以促进Na + / K +的快速转移。密度泛函理论计算揭示了核壳Sb @ Sb 2 O 3异质结构Na / K储存的机理和意义,验证了Sb高电导率与Sb 2稳定性之间的耦合。O 3可以缓解单个构造块的缺点,从而提高Na / K存储容量。此外,嵌入3D碳框架中且具有坚固结构的核壳结构可以进一步提高电极的机械强度,从而缓冲循环时剧烈的体积变化。其结果是,这样的复合结构表现出≈573毫安Hg的高比容量-1为钠离子电池(SIB)阳极和≈474毫安汞柱-1在100mA克为钾离子电池(PIB)阳极-1,以及更高的速率性能(SIB阳极在30 A g -1时为302 mA hg -1,而PIB阳极在5 A g -1时为239 mA hg -1)。