当前位置:
X-MOL 学术
›
ChemPhysChem
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Magnetohydrodynamic Interface‐Rearranged Lithium Ions Distribution for Uniform Lithium Deposition and Stable Lithium Metal Anode
ChemPhysChem ( IF 2.3 ) Pub Date : 2021-01-16 , DOI: 10.1002/cphc.202000897 Mingming Ma 1 , Chaoqi Dai 2 , Kailin Luo 2 , Shun Li 2 , Jiahe Chen 2 , Zhendong Li 2 , Xiaodi Ren 3 , Deyu Wang 2 , Haiyong He 2 , Mingzhi Dai 2 , Zhe Peng 4
ChemPhysChem ( IF 2.3 ) Pub Date : 2021-01-16 , DOI: 10.1002/cphc.202000897 Mingming Ma 1 , Chaoqi Dai 2 , Kailin Luo 2 , Shun Li 2 , Jiahe Chen 2 , Zhendong Li 2 , Xiaodi Ren 3 , Deyu Wang 2 , Haiyong He 2 , Mingzhi Dai 2 , Zhe Peng 4
Affiliation
Uneven lithium (Li) electrodeposition hinders the wide application of high‐energy‐density Li metal batteries (LMBs). Current efforts mainly focus on the side‐reaction suppression between Li and electrolyte, neglecting the determinant factor of mass transport in affecting Li deposition. Herein, guided Li+ mass transport under the action of a local electric field near magnetic nanoparticles or structures at the Li metal interface, known as the magnetohydrodynamic (MHD) effect, are proposed to promote uniform Li deposition. The modified Li+ trajectories are revealed by COMSOL Multiphysics simulations, and verified by the compact and disc‐like Li depositions on a model Fe3O4 substrate. Furthermore, a patterned mesh with the magnetic Fe−Cr2O3 core‐shell skeleton is used as a facile and efficient protective structure for Li metal anodes, enabling Li metal batteries to achieve a Coulombic efficiency of 99.5 % over 300 cycles at a high cathode loading of 5.0 mAh cm−2. The Li protection strategy based on the MHD interface design might open a new opportunity to develop high‐energy‐density LMBs.
中文翻译:
磁流体动力学界面重排的锂离子分布,以实现均匀的锂沉积和稳定的锂金属阳极
锂(Li)电沉积不均匀会阻碍高能量密度锂金属电池(LMB)的广泛应用。当前的努力主要集中在抑制锂与电解质之间的副反应上,而忽略了影响锂沉积的质量传输的决定性因素。这里,提出了在Li金属界面处的磁性纳米颗粒或结构附近的局部电场的作用下的引导的Li +质传输,被称为磁流体动力学(MHD)效应,以促进均匀的Li沉积。改进的Li +轨迹通过COMSOL Multiphysics模拟显示,并通过在模型Fe 3 O 4上的致密和盘状Li沉积进行了验证。基质。此外,具有磁性Fe-Cr 2 O 3核-壳骨架的图案化网格可用作锂金属阳极的便捷高效保护结构,使锂金属电池在300次循环中以高效率实现99.5%的库仑效率阴极负载为5.0 mAh cm -2。基于MHD接口设计的Li保护策略可能会为开发高能量密度LMB开辟新的机会。
更新日期:2021-01-16
中文翻译:
磁流体动力学界面重排的锂离子分布,以实现均匀的锂沉积和稳定的锂金属阳极
锂(Li)电沉积不均匀会阻碍高能量密度锂金属电池(LMB)的广泛应用。当前的努力主要集中在抑制锂与电解质之间的副反应上,而忽略了影响锂沉积的质量传输的决定性因素。这里,提出了在Li金属界面处的磁性纳米颗粒或结构附近的局部电场的作用下的引导的Li +质传输,被称为磁流体动力学(MHD)效应,以促进均匀的Li沉积。改进的Li +轨迹通过COMSOL Multiphysics模拟显示,并通过在模型Fe 3 O 4上的致密和盘状Li沉积进行了验证。基质。此外,具有磁性Fe-Cr 2 O 3核-壳骨架的图案化网格可用作锂金属阳极的便捷高效保护结构,使锂金属电池在300次循环中以高效率实现99.5%的库仑效率阴极负载为5.0 mAh cm -2。基于MHD接口设计的Li保护策略可能会为开发高能量密度LMB开辟新的机会。