窄带宽发光材料已用于光电设备,超分辨率,激光,成像和传感中。新一代碳荧光纳米材料-碳点-由于其操作简单,环境友好和良好的光电性能等优点而备受关注。在这项工作中,通过一步法成功地制备了两个具有长波长荧光的窄带宽(21和30 nm)发射石墨烯量子点,它们的光致发光(PL)峰分别在683和667 nm。这些发红光的石墨烯量子点的特征在于荧光寿命的激发波长依赖性,并已成功地应用于光谱和空间超分辨感测。这里,我们建议开发基于两个窄带宽发射石墨烯量子点的红外光谱传感配置。使用该方法的优点是无需使用光谱仪即可提取光谱信息,并且同时激发了两个窄带宽发射的石墨烯量子点,从而通过两种类型的石墨烯量子点的独特时间“特征”实现了空间分离。石墨烯量子点(GQDs-Sn和GQDs-OH)的空间分离定位误差分别为1个像素(10 nm)和3个像素(30 nm)。该方法还可以针对实现空间超分辨感测的纳米相关应用进行调整。使用该方法的优点是无需使用光谱仪即可提取光谱信息,并且同时激发了两个窄带宽发射的石墨烯量子点,从而通过两种类型的石墨烯量子点的独特时间“特征”实现了空间分离。石墨烯量子点(GQDs-Sn和GQDs-OH)的空间分离定位误差分别为1个像素(10 nm)和3个像素(30 nm)。该方法还可以针对实现空间超分辨感测的纳米相关应用进行调整。使用该方法的优点是无需使用光谱仪即可提取光谱信息,并且同时激发了两个窄带宽发射的石墨烯量子点,从而通过两种类型的石墨烯量子点的独特时间“特征”实现了空间分离。石墨烯量子点(GQDs-Sn和GQDs-OH)的空间分离定位误差分别为1个像素(10 nm)和3个像素(30 nm)。该方法还可以针对实现空间超分辨感测的纳米相关应用进行调整。石墨烯量子点(GQDs-Sn和GQDs-OH)的空间分离定位误差分别为1个像素(10 nm)和3个像素(30 nm)。该方法还可以针对实现空间超分辨感测的纳米相关应用进行调整。石墨烯量子点(GQDs-Sn和GQDs-OH)的空间分离定位误差分别为1个像素(10 nm)和3个像素(30 nm)。该方法还可以针对实现空间超分辨感测的纳米相关应用进行调整。
"点击查看英文标题和摘要"
Ultra-narrow-bandwidth graphene quantum dots for superresolved spectral and spatial sensing
Narrow-bandwidth luminescent materials are already used in optoelectronic devices, superresolution, lasers, imaging, and sensing. The new-generation carbon fluorescence nanomaterials—carbon dots—have attracted considerable attention due to their advantages, such as simple operation, environmental friendliness, and good photoelectric performance. In this work, two narrower-bandwidth (21 and 30 nm) emission graphene quantum dots with long-wavelength fluorescence were successfully prepared by a one-step method, and their photoluminescence (PL) peaks were at 683 and 667 nm, respectively. These red-emitting graphene quantum dots were characterized by excitation wavelength dependence of the fluorescence lifetimes, and they were successfully applied to spectral and spatial superresolved sensing. Here, we proposed to develop an infrared spectroscopic sensing configuration based on two narrow-bandwidth-emission graphene quantum dots. The advantage of the method used is that spectroscopic information was extracted without using a spectrometer, and two narrow-bandwidth-emission graphene quantum dots were simultaneously excited to achieve spatial separation through the unique temporal “signatures” of the two types of graphene quantum dots. The spatial separation localization errors of the graphene quantum dots (GQDs-Sn and GQDs-OH) were 1 pixel (10 nm) and 3 pixels (30 nm), respectively. The method could also be adjusted for nanoscope-related applications in which spatial superresolved sensing was achieved.