当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Reversible Silicon Anodes with Long Cycles by Multifunctional Volumetric Buffer Layers
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-01-14 , DOI: 10.1021/acsami.0c21455
Tiansheng Mu 1, 2 , Shuaifeng Lou 1 , Nathaniel Graham Holmes 2 , Changhong Wang 2 , Mengxue He 1, 2 , Baicheng Shen 1 , Xiaoting Lin 2 , Pengjian Zuo 1 , Yulin Ma 1 , Ruying Li 2 , Chunyu Du 1 , Jiajun Wang 1 , Geping Yin 1 , Xueliang Sun 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-01-14 , DOI: 10.1021/acsami.0c21455
Tiansheng Mu 1, 2 , Shuaifeng Lou 1 , Nathaniel Graham Holmes 2 , Changhong Wang 2 , Mengxue He 1, 2 , Baicheng Shen 1 , Xiaoting Lin 2 , Pengjian Zuo 1 , Yulin Ma 1 , Ruying Li 2 , Chunyu Du 1 , Jiajun Wang 1 , Geping Yin 1 , Xueliang Sun 2
Affiliation
![]() |
Establishing a stable, stress-relieving configuration is imperative to achieve a reversible silicon anode for high energy density lithium-ion batteries. Herein, we propose a silicon composite anode (denoted as T-Si@C), which integrates free space and mixed carbon shells doped with rigid TiO2/Ti5Si3 nanoparticles. In this configuration, the free space accommodates the silicon volume fluctuation during battery operation. The carbon shells with embedded TiO2/Ti5Si3 nanoparticles maintain the structural stability of the anode while accelerating the lithium-ion diffusion kinetics and mitigating interfacial side reactions. Based on these advantages, T-Si@C anodes demonstrate an outstanding lithium storage performance with impressive long-term cycling reversibility and good rate capability. Additionally, T-Si@C//LiFePO4 full cells show superior electrochemical reversibility. This work highlights the importance of rational structural manipulation of silicon anodes and affords fresh insights into achieving advanced silicon anodes with long life.
中文翻译:
多功能体积缓冲层的长循环可逆硅阳极
必须建立稳定的应力消除配置,以实现用于高能量密度锂离子电池的可逆硅阳极。本文中,我们提出了一种硅复合阳极(表示为T-Si @ C),该阳极集成了自由空间和掺杂有刚性TiO 2 / Ti 5 Si 3纳米颗粒的混合碳壳。在这种配置中,自由空间可适应电池运行期间硅体积的波动。嵌有TiO 2 / Ti 5 Si 3的碳壳纳米粒子在加速锂离子扩散动力学和减轻界面副反应的同时,还保持了阳极的结构稳定性。基于这些优点,T-Si @ C阳极具有出色的锂存储性能,令人印象深刻的长期循环可逆性和良好的倍率性能。此外,T-Si @ C // LiFePO 4全电池显示出优异的电化学可逆性。这项工作突显了合理地操纵硅阳极的重要性,并为实现具有长寿命的高级硅阳极提供了新的见识。
更新日期:2021-01-27
中文翻译:

多功能体积缓冲层的长循环可逆硅阳极
必须建立稳定的应力消除配置,以实现用于高能量密度锂离子电池的可逆硅阳极。本文中,我们提出了一种硅复合阳极(表示为T-Si @ C),该阳极集成了自由空间和掺杂有刚性TiO 2 / Ti 5 Si 3纳米颗粒的混合碳壳。在这种配置中,自由空间可适应电池运行期间硅体积的波动。嵌有TiO 2 / Ti 5 Si 3的碳壳纳米粒子在加速锂离子扩散动力学和减轻界面副反应的同时,还保持了阳极的结构稳定性。基于这些优点,T-Si @ C阳极具有出色的锂存储性能,令人印象深刻的长期循环可逆性和良好的倍率性能。此外,T-Si @ C // LiFePO 4全电池显示出优异的电化学可逆性。这项工作突显了合理地操纵硅阳极的重要性,并为实现具有长寿命的高级硅阳极提供了新的见识。