当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
3D‐Printable Fluoropolymer Gas Diffusion Layers for CO2 Electroreduction
Advanced Materials ( IF 27.4 ) Pub Date : 2021-01-14 , DOI: 10.1002/adma.202003855 Joshua Wicks 1 , Melinda L. Jue 2 , Victor A. Beck 2 , James S. Oakdale 2 , Nikola A. Dudukovic 2 , Auston L. Clemens 2 , Siwei Liang 2 , Megan E. Ellis 2 , Geonhui Lee 1 , Sarah E. Baker 2 , Eric B. Duoss 2 , Edward H. Sargent 1
Advanced Materials ( IF 27.4 ) Pub Date : 2021-01-14 , DOI: 10.1002/adma.202003855 Joshua Wicks 1 , Melinda L. Jue 2 , Victor A. Beck 2 , James S. Oakdale 2 , Nikola A. Dudukovic 2 , Auston L. Clemens 2 , Siwei Liang 2 , Megan E. Ellis 2 , Geonhui Lee 1 , Sarah E. Baker 2 , Eric B. Duoss 2 , Edward H. Sargent 1
Affiliation
The electrosynthesis of value‐added multicarbon products from CO2 is a promising strategy to shift chemical production away from fossil fuels. Particularly important is the rational design of gas diffusion electrode (GDE) assemblies to react selectively, at scale, and at high rates. However, the understanding of the gas diffusion layer (GDL) in these assemblies is limited for the CO2 reduction reaction (CO2RR): particularly important, but incompletely understood, is how the GDL modulates product distributions of catalysts operating in high current density regimes > 300 mA cm−2. Here, 3D‐printable fluoropolymer GDLs with tunable microporosity and structure are reported and probe the effects of permeance, microstructural porosity, macrostructure, and surface morphology. Under a given choice of applied electrochemical potential and electrolyte, a 100× increase in the C2H4:CO ratio due to GDL surface morphology design over a homogeneously porous equivalent and a 1.8× increase in the C2H4 partial current density due to a pyramidal macrostructure are observed. These findings offer routes to improve CO2RR GDEs as a platform for 3D catalyst design.
中文翻译:
3D可打印的含氟聚合物气体扩散层,用于二氧化碳的电还原
由CO 2电合成增值多碳产品是将化学生产从化石燃料转移的有前途的策略。特别重要的是合理设计气体扩散电极(GDE)组件,以进行选择性,大规模和高速率的反应。但是,对于这些组件中的气体扩散层(GDL)的理解仅限于CO 2还原反应(CO 2 RR):特别重要,但尚未完全理解的是,GDL如何调节以高电流密度运行的催化剂的产物分布制度> 300毫安厘米-2。在这里,报告了具有可调微孔和结构的3D可打印含氟聚合物GDL,并探讨了磁导率,微结构孔隙率,宏观结构和表面形态的影响。下施加的电化电势和电解质的给定的选择,一个100 ×增加在C 2 H ^ 4:CO比率由于GDL表面形态设计上均匀多孔当量和1.8 ×增加在C 2 H ^ 4局部电流密度,由于观察到金字塔形的宏观结构。这些发现提供了改进CO 2 RR GDEs的途径,作为3D催化剂设计的平台。
更新日期:2021-02-16
中文翻译:
3D可打印的含氟聚合物气体扩散层,用于二氧化碳的电还原
由CO 2电合成增值多碳产品是将化学生产从化石燃料转移的有前途的策略。特别重要的是合理设计气体扩散电极(GDE)组件,以进行选择性,大规模和高速率的反应。但是,对于这些组件中的气体扩散层(GDL)的理解仅限于CO 2还原反应(CO 2 RR):特别重要,但尚未完全理解的是,GDL如何调节以高电流密度运行的催化剂的产物分布制度> 300毫安厘米-2。在这里,报告了具有可调微孔和结构的3D可打印含氟聚合物GDL,并探讨了磁导率,微结构孔隙率,宏观结构和表面形态的影响。下施加的电化电势和电解质的给定的选择,一个100 ×增加在C 2 H ^ 4:CO比率由于GDL表面形态设计上均匀多孔当量和1.8 ×增加在C 2 H ^ 4局部电流密度,由于观察到金字塔形的宏观结构。这些发现提供了改进CO 2 RR GDEs的途径,作为3D催化剂设计的平台。