当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Two-dimensional matrices confining metal single atoms with enhanced electrochemical reaction kinetics for energy storage applications
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2020-12-10 , DOI: 10.1039/d0ee02651d Peng Wang 1, 2, 3, 4, 5 , Danyang Zhao 1, 2, 3, 4, 5 , Longwei Yin 1, 2, 3, 4, 5
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2020-12-10 , DOI: 10.1039/d0ee02651d Peng Wang 1, 2, 3, 4, 5 , Danyang Zhao 1, 2, 3, 4, 5 , Longwei Yin 1, 2, 3, 4, 5
Affiliation
Diversified electrochemical energy storage systems highly depend on electrode material construction. In this area, single-atom catalysts intentionally incorporated within two-dimensional (2D) matrices (SAs@2D) can offer desirable advantages derived from host–guest interactions with abundant extrinsic defects. Nevertheless, the intrinsic manipulation mechanisms and guiding insights regarding the use of SAs@2D in various energy storage devices have not been comprehensively appraised. Firstly, newly updated synthesis methodologies and structure–activity mechanisms are summarized in this review. Then, cutting-edge applications regarding the use of SAs@2D hybrids in various rechargeable batteries, such as Li–O2, Li–CO2, Li–S, Li–metal, and Zn–air batteries, and the central kinetics amelioration schemes underlying these applications are highlighted in detail for the first time. We argue that the maximally exposed active centers and optimized electronic environments are responsible for enhancing mass transfer throughout the conductive grid, which is indispensable for accelerating the redox kinetics and enhancing energy efficiencies in advanced battery systems. In particular, in-depth mechanisms describing how high-density unsaturated coordination sites can tune the adsorption-nucleation-growth behaviors of intermediates in the framework and how the impressive electronic and structural characteristics of SAs@2D can lower potential energy barriers during redox reactions are fundamentally concentrated on. Finally, challenges and advisory guidelines for further investigations relating to the use of SAs@2D in rechargeable batteries are presented.
中文翻译:
二维矩阵以增强的电化学反应动力学约束金属单原子,用于储能应用
多样化的电化学储能系统高度依赖于电极材料的结构。在此领域,有意地将其掺入二维(2D)矩阵(SAs @ 2D)中的单原子催化剂可提供源于主体与客体之间的相互作用以及大量外部缺陷的优势。然而,关于在各种能量存储设备中使用SAs @ 2D的内在操纵机制和指导见解尚未得到全面评估。首先,本综述总结了新近更新的合成方法和结构活性机制。然后,在各种可再充电电池(例如Li–O 2,Li–CO 2中)中使用SAs @ 2D混合动力的前沿应用,Li-S,Li-金属和Zn-空气电池,以及这些应用所基于的中心动力学改善方案,都是首次得到了重点强调。我们认为,最大程度暴露的活性中心和优化的电子环境是增强整个导电网格中质量转移的原因,而这对于加速氧化还原动力学和增强先进电池系统中的能量效率是必不可少的。特别是,深入的机制描述了高密度不饱和配位点如何调整框架中中间体的吸附成核生长行为,以及SAs @ 2D令人印象深刻的电子和结构特征如何降低氧化还原反应过程中的势能垒。从根本上集中精力。最后,
更新日期:2021-01-14
中文翻译:
二维矩阵以增强的电化学反应动力学约束金属单原子,用于储能应用
多样化的电化学储能系统高度依赖于电极材料的结构。在此领域,有意地将其掺入二维(2D)矩阵(SAs @ 2D)中的单原子催化剂可提供源于主体与客体之间的相互作用以及大量外部缺陷的优势。然而,关于在各种能量存储设备中使用SAs @ 2D的内在操纵机制和指导见解尚未得到全面评估。首先,本综述总结了新近更新的合成方法和结构活性机制。然后,在各种可再充电电池(例如Li–O 2,Li–CO 2中)中使用SAs @ 2D混合动力的前沿应用,Li-S,Li-金属和Zn-空气电池,以及这些应用所基于的中心动力学改善方案,都是首次得到了重点强调。我们认为,最大程度暴露的活性中心和优化的电子环境是增强整个导电网格中质量转移的原因,而这对于加速氧化还原动力学和增强先进电池系统中的能量效率是必不可少的。特别是,深入的机制描述了高密度不饱和配位点如何调整框架中中间体的吸附成核生长行为,以及SAs @ 2D令人印象深刻的电子和结构特征如何降低氧化还原反应过程中的势能垒。从根本上集中精力。最后,