当前位置:
X-MOL 学术
›
Phys. Rev. B
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Quantitative explanation of the Schottky barrier height
Physical Review B ( IF 3.2 ) Pub Date : 2021-01-14 , DOI: 10.1103/physrevb.103.035304 Raymond T. Tung , Leeor Kronik
Physical Review B ( IF 3.2 ) Pub Date : 2021-01-14 , DOI: 10.1103/physrevb.103.035304 Raymond T. Tung , Leeor Kronik
Eight decades ago, Schottky proposed that the energy barrier at the metal-semiconductor interface, which now bears his name, should be compared with the difference of two surface quantities, the work function (WF) of the metal and the ionization potential of the semiconductor. This tradition of plotting and modeling the Schottky barrier height (SBH) against the metal WF has been followed ever since. However, success in general quantitative understanding of the SBH from physical principles has been limited, and empirical models are still relied upon. Here, we show that the stumbling block that has prevented a broadly applicable physical explanation of the SBH is the presence of surface dipole terms, inherently included in the traditional, Schottky-Mott styled analyses. By removing these surface contributions with the help of the recently developed neutral polyhedra theory, we show that the SBHs calculated for a very large number of epitaxial interfaces between metals and zinc-blende semiconductors are quantitatively explained from general chemical principles. Amazingly, SBHs calculated for 17 different semiconductors fit onto the same universal plot. Previously, SBHs needed to be grouped according to the semiconductor before analyses could be conducted separately for, and with empirical parameters specific to, each semiconductor. This work shows that the mechanism for SBH formation at metal-semiconductor interface is none other than the same chemistry responsible for charge distribution in molecules. There is no need for empirical modeling once the traditional beginning-point of SBH analysis is abandoned and the proposed new one is used.
中文翻译:
肖特基势垒高度的定量解释
八十年前,肖特基提出将现在以他的名字命名的金属-半导体界面处的能垒与两个表面量,金属的功函数(WF)和半导体的电离势之差进行比较。 。从那时起,就一直遵循这种针对金属WF绘制和建模肖特基势垒高度(SBH)的传统。但是,从物理原理对SBH的一般定量理解方面取得的成功是有限的,并且仍然依赖经验模型。在这里,我们表明阻止了SBH广泛使用的物理解释的绊脚石是表面偶极子项的存在,表面偶极子项固有地包含在传统的Schottky-Mott样式分析中。通过借助最近开发的中性多面体理论消除这些表面贡献,我们表明,根据一般化学原理可定量地解释针对金属与亮锌半导体之间的大量外延界面计算出的SBH。令人惊讶的是,针对17种不同半导体计算出的SBH符合同一通用图。以前,需要先根据半导体对SBH进行分组,然后才能针对每个半导体分别使用特定的经验参数进行分析。这项工作表明,在金属-半导体界面形成SBH的机理与负责分子中电荷分布的化学作用相同。
更新日期:2021-01-14
中文翻译:
肖特基势垒高度的定量解释
八十年前,肖特基提出将现在以他的名字命名的金属-半导体界面处的能垒与两个表面量,金属的功函数(WF)和半导体的电离势之差进行比较。 。从那时起,就一直遵循这种针对金属WF绘制和建模肖特基势垒高度(SBH)的传统。但是,从物理原理对SBH的一般定量理解方面取得的成功是有限的,并且仍然依赖经验模型。在这里,我们表明阻止了SBH广泛使用的物理解释的绊脚石是表面偶极子项的存在,表面偶极子项固有地包含在传统的Schottky-Mott样式分析中。通过借助最近开发的中性多面体理论消除这些表面贡献,我们表明,根据一般化学原理可定量地解释针对金属与亮锌半导体之间的大量外延界面计算出的SBH。令人惊讶的是,针对17种不同半导体计算出的SBH符合同一通用图。以前,需要先根据半导体对SBH进行分组,然后才能针对每个半导体分别使用特定的经验参数进行分析。这项工作表明,在金属-半导体界面形成SBH的机理与负责分子中电荷分布的化学作用相同。