Materials Today ( IF 21.1 ) Pub Date : 2021-01-13 , DOI: 10.1016/j.mattod.2020.11.023 Partha Kumbhakar , Chinmayee Chowde Gowda , Preeti Lata Mahapatra , Madhubanti Mukherjee , Kirtiman Deo Malviya , Mohamed Chaker , Amreesh Chandra , Basudev Lahiri , P.M. Ajayan , Deep Jariwala , Abhishek Singh , Chandra Sekhar Tiwary
In the past decade, several different classes of two-dimensional (2D) materials beyond graphene such as layered polymorphs of group V elements (phophorene, arsenene), Metalenes (gallenene, stanene etc.), Transition Metal–Dichalcogenides (TMDs), group III monochalcogenides, transition metal carbides as well as nitrides have been thoroughly explored. These atomically thin materials have gathered significant focus due to their unique electronic, optical, and magnetic properties, which are seldom found in their bulk counterparts due to the high surface to volume ratios and quantum confined electronic structure. These properties have led to excitement in the research community due to their potential applications in various fields of optoelectronics, energy harvesting and storage, sensing, electronics, magneto-electronics, and thermo-electronic applications. However, there is another emerging class of layered oxide 2D materials, which has been sporadically explored and lacks a systematic compilation of the made progress, potential benefits and research opportunities that may lie ahead. This specific review provides a thorough and systematic summary of research carried out on layered 2D oxides both from an experimental and theoretical perspective. Due to ultra-thin nature of the 2D metal oxides, a majority of the atoms are accessible to the surfaces, which induces new properties and applications in comparison to traditional bulk oxides. We discuss several different classes of metal oxides in their 2D forms such as MO, MOx, MxOy (where M stands for metals; x and y possible oxidation states) as well as Perovskite type oxides in this review specifically focusing on optoelectronics, sensing and electrochemical storage applications. We further make critical comparisons with bulk metal oxides, and elaborate the specific advantages of 2D metal oxides as compared to their bulk counterparts in respective applications. Finally, we conclude by providing a critical assessment and outlook of technical challenges and research opportunities for future development of layered 2D oxides.
中文翻译:
新兴二维金属氧化物及其应用
在过去的十年中,除了石墨烯之外,还有几种不同类别的二维 (2D) 材料,例如 V 族元素(磷烯、砷烯)、Metalenes(gallenene、stanene 等)、过渡金属-二硫属元素化物 (TMDs)、 III 单硫属化物、过渡金属碳化物和氮化物已被彻底探索。这些原子级薄的材料由于其独特的电子、光学和磁性特性而受到广泛关注,由于高表面积体积比和量子限制电子结构,这些特性在它们的大块材料中很少见。由于这些特性在光电子学、能量收集和存储、传感、电子学、磁电子学、和热电子应用。然而,还有另一种新兴的层状氧化物 2D 材料,人们对其进行了零星探索,并且缺乏对取得的进展、潜在益处和未来可能存在的研究机会的系统汇编。这篇具体的评论从实验和理论的角度对层状二维氧化物的研究进行了全面和系统的总结。由于 2D 金属氧化物的超薄性质,大多数原子都可以进入表面,与传统的块状氧化物相比,这具有新的特性和应用。我们讨论了几种不同类别的 2D 形式的金属氧化物,例如 MO、MO 已经零星地探索过,并且缺乏对取得的进展、潜在的好处和未来可能出现的研究机会的系统汇编。这篇具体的评论从实验和理论的角度对层状二维氧化物的研究进行了全面和系统的总结。由于 2D 金属氧化物的超薄特性,大多数原子都可以进入表面,与传统的块状氧化物相比,这具有新的特性和应用。我们讨论了几种不同类别的 2D 形式的金属氧化物,例如 MO、MO 已经零星地探索过,并且缺乏对取得的进展、潜在的好处和未来可能出现的研究机会的系统汇编。这篇具体的评论从实验和理论的角度对层状二维氧化物的研究进行了全面和系统的总结。由于 2D 金属氧化物的超薄性质,大多数原子都可以进入表面,与传统的块状氧化物相比,这具有新的特性和应用。我们讨论了几种不同类别的 2D 形式的金属氧化物,例如 MO、MO 由于 2D 金属氧化物的超薄性质,大多数原子都可以进入表面,与传统的块状氧化物相比,这具有新的特性和应用。我们讨论了几种不同类别的 2D 形式的金属氧化物,例如 MO、MO 由于 2D 金属氧化物的超薄性质,大多数原子都可以进入表面,与传统的块状氧化物相比,这具有新的特性和应用。我们讨论了几种不同类别的 2D 形式的金属氧化物,例如 MO、MOx、M x O y(其中 M 代表金属; x和y可能的氧化态)以及本综述中的钙钛矿型氧化物,特别关注光电子学、传感和电化学存储应用。我们进一步与块状金属氧化物进行了重要比较,并详细阐述了 2D 金属氧化物与其在各自应用中的块状对应物相比的具体优势。最后,我们总结了对未来层状二维氧化物发展的技术挑战和研究机会的批判性评估和展望。