Journal of Energy Chemistry ( IF 14.0 ) Pub Date : 2021-01-13 , DOI: 10.1016/j.jechem.2021.01.004 Ran Zhang , Yutao Dong , Mohammed A. Al-Tahan , Yingying Zhang , Ruipeng Wei , Yuhang Ma , Changchun Yang , Jianmin Zhang
The design of sulfur hosts with high conductivity, large specific surface area, strong adsorption and electrocatalytic ability is crucial to advance high performance lithium-sulfur batteries. Herein, a novel ultrathin sandwich-type Ni-doped MoS2/reduced graphene oxide (denote as Ni-doped MoS2/rGO) hybrid is developed as a sulfur host through a simple one-step hydrothermal route. The two-dimensional layered structure Ni-doped MoS2/rGO hybrid with heterostructure and heteroatom architecture defects not only plays a key role in adsorption of lithium polysulfide but also catalyzes on redox kinetics of sulfur and polysulfide species. Meanwhile, it can contribute to the large specific surface area for Li2S/S8 deposition, fast Li-ion and electron transportation, thus enhancing the electrocatalytic properties, as confirmed firstly by cyclic voltammetry (CV) results. Due to the adsorption-catalytic synergistic effect, the Ni-doped MoS2/rGO cathode exhibits high specific capacity (1343.6 mA h g−1 at 0.2 C, 921.6 mA h g−1 at 1 C), high coulombic efficiency and an outstanding cycle stability (with the low attenuation rate of 0.077% per cycle over 140 cycles at 0.5 C and 0.11% per cycle over 400 cycles at 1 C, respectively). This work proposes some inspiration for exploring the construction of advanced lithium-sulfur batteries through the rational design defects of atomic structure and electronic states of MoS2 as sulfur host.
中文翻译:
洞察三明治状超薄镍掺杂MoS 2 / rGO杂化物作为有效硫基质,对锂硫电池具有出色的吸附和电催化作用
具有高电导率,大比表面积,强吸附和电催化能力的硫基质的设计对于推进高性能锂硫电池至关重要。在本文中,通过简单的一步水热法开发了一种新型的超薄夹心型掺Ni的MoS 2 /还原的氧化石墨烯(表示为掺Ni的MoS 2 / rGO)作为硫主体。具有异质结构和杂原子结构缺陷的二维Ni掺杂MoS 2 / rGO杂化层结构不仅在多硫化锂的吸附中起关键作用,而且还催化了硫和多硫化物的氧化还原动力学。同时,它可以有助于提高Li 2 S / S 8的比表面积如首先通过循环伏安法(CV)所证实的,沉积,快速的锂离子和电子传输,从而增强了电催化性能。由于吸附催化的协同作用,Ni掺杂的MoS 2 / rGO阴极表现出高的比容量(0.2 C时为1343.6 mA h g -1,在1 C时为921.6 mA h g -1),高库仑效率和出色的循环稳定性(在0.5 C的140个循环中,每个周期的衰减率为0.077%,在1 C的400个循环中,每个周期的衰减率为0.11%)。这项工作为通过合理设计原子结构和作为硫主体的MoS 2电子态的设计缺陷,为探索高级锂硫电池的构造提出了一些启示。