当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Operando Methods in Electrocatalysis
ACS Catalysis ( IF 11.3 ) Pub Date : 2021-01-11 , DOI: 10.1021/acscatal.0c04789
Yao Yang 1 , Yin Xiong 1 , Rui Zeng 1 , Xinyao Lu 1 , Mihail Krumov 1 , Xin Huang 2, 3 , Weixuan Xu 1 , Hongsen Wang 1 , Francis J. DiSalvo 1 , Joel. D. Brock 2, 3 , David A. Muller 2, 4 , Héctor D. Abruña 1
ACS Catalysis ( IF 11.3 ) Pub Date : 2021-01-11 , DOI: 10.1021/acscatal.0c04789
Yao Yang 1 , Yin Xiong 1 , Rui Zeng 1 , Xinyao Lu 1 , Mihail Krumov 1 , Xin Huang 2, 3 , Weixuan Xu 1 , Hongsen Wang 1 , Francis J. DiSalvo 1 , Joel. D. Brock 2, 3 , David A. Muller 2, 4 , Héctor D. Abruña 1
Affiliation
![]() |
Electrocatalysis has been the cornerstone for enhancing energy efficiency, minimizing environmental impacts and carbon emissions, and enabling a more sustainable way of meeting global energy needs. Elucidating the structure and reaction mechanisms of electrocatalysts at electrode–electrolyte interfaces is fundamental for advancing renewable energy technologies, including fuel cells, water electrolyzers, CO2 reduction, and batteries, among others. One of the fundamental challenges in electrocatalysis is understanding how to activate and sustain electrocatalytic activity, under operating conditions, for extended time periods and with optimal activity and selectivity. Although traditional ex situ methods have provided a baseline understanding of heterogeneous (electro)catalysts, they cannot provide real-time interfacial structural and compositional changes under reaction conditions, which calls for the use of in situ/operando methods. Herein, we provide a selective review of in situ and operando characterizations, in particular, the use of operando synchrotron-based X-ray techniques and in situ atomic-scale scanning transmission electron microscopy (STEM) in liquid/gas phases to advance our understanding of electrode–electrolyte interfaces at macro- and microscopic levels, which dictate the charge transfer kinetics and overall reaction mechanisms. The use of scanning electrochemical microscopy (SECM) enables direct probing of the local activity of electrocatalysts at the nanometer scale. In addition, differential electrochemical mass spectrometry (DEMS) and the electrochemical quartz crystal balance (EQCM) enable the simultaneous identification of multiple reaction intermediates and products for mechanistic studies of electrocatalyst selectivity and durability. We anticipate that continuous advances of in situ/operando techniques and probes will continue to make significant contributions to establishing structure/composition-reactivity correlations of electrocatalysts at unprecedented atomic-scale and molecular levels under realistic, real-time reaction conditions.
中文翻译:
电催化中的操作方法
电催化一直是提高能源效率,最大程度地减少环境影响和碳排放,并以更可持续的方式满足全球能源需求的基石。阐明电极-电解质界面上的电催化剂的结构和反应机理,对于推进可再生能源技术至关重要,包括燃料电池,水电解槽,CO 2还原和电池等。电催化的基本挑战之一是了解如何在操作条件下长时间激活并以最佳活性和选择性激活和维持电催化活性。尽管是传统的非原生境这些方法提供了对多相(电)催化剂的基础了解,它们无法在反应条件下提供实时的界面结构和组成变化,这要求使用原位/操作方法。本文中,我们提供了对原位和操纵特征的选择性回顾,特别是基于操纵同步子的X射线技术和原位的使用在液相/气相中进行原子级扫描透射电子显微镜(STEM),以增进我们对宏观和微观水平上电极-电解质界面的了解,从而决定了电荷转移动力学和整体反应机理。扫描电化学显微镜(SECM)的使用可以直接探测纳米级的电催化剂的局部活性。此外,差示电化学质谱法(DEMS)和电化学石英晶体天平(EQCM)能够同时鉴定多种反应中间体和产物,以用于电催化剂选择性和耐久性的机理研究。我们期望原位/操作数的持续发展 技术和探针将继续为在现实的实时反应条件下以前所未有的原子级和分子水平建立电催化剂的结构/组成-反应性相关性做出重大贡献。
更新日期:2021-02-05
中文翻译:
![](https://scdn.x-mol.com/jcss/images/paperTranslation.png)
电催化中的操作方法
电催化一直是提高能源效率,最大程度地减少环境影响和碳排放,并以更可持续的方式满足全球能源需求的基石。阐明电极-电解质界面上的电催化剂的结构和反应机理,对于推进可再生能源技术至关重要,包括燃料电池,水电解槽,CO 2还原和电池等。电催化的基本挑战之一是了解如何在操作条件下长时间激活并以最佳活性和选择性激活和维持电催化活性。尽管是传统的非原生境这些方法提供了对多相(电)催化剂的基础了解,它们无法在反应条件下提供实时的界面结构和组成变化,这要求使用原位/操作方法。本文中,我们提供了对原位和操纵特征的选择性回顾,特别是基于操纵同步子的X射线技术和原位的使用在液相/气相中进行原子级扫描透射电子显微镜(STEM),以增进我们对宏观和微观水平上电极-电解质界面的了解,从而决定了电荷转移动力学和整体反应机理。扫描电化学显微镜(SECM)的使用可以直接探测纳米级的电催化剂的局部活性。此外,差示电化学质谱法(DEMS)和电化学石英晶体天平(EQCM)能够同时鉴定多种反应中间体和产物,以用于电催化剂选择性和耐久性的机理研究。我们期望原位/操作数的持续发展 技术和探针将继续为在现实的实时反应条件下以前所未有的原子级和分子水平建立电催化剂的结构/组成-反应性相关性做出重大贡献。