当前位置:
X-MOL 学术
›
Anal. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhancement of Chemiluminescence Intensity of S2* in Non-premixed Hydrogen Microjet Flame in the Photometric Detector for Sulfur Detection
Analytical Chemistry ( IF 6.7 ) Pub Date : 2021-01-11 , DOI: 10.1021/acs.analchem.0c02825
Lanxiu Ni 1, 2 , Shenghong Li 1 , Kun Ding 1 , Xuhui Geng 1 , Chunfeng Duan 1 , Yafeng Guan 1
Analytical Chemistry ( IF 6.7 ) Pub Date : 2021-01-11 , DOI: 10.1021/acs.analchem.0c02825
Lanxiu Ni 1, 2 , Shenghong Li 1 , Kun Ding 1 , Xuhui Geng 1 , Chunfeng Duan 1 , Yafeng Guan 1
Affiliation
![]() |
A transparent quartz rod (q) placed vertically on top of a non-premixed hydrogen microjet flame in a flame photometric detector (qFPD) was developed and evaluated for sulfur detection. The microjet flame burned around the quartz rod because of Coanda effect, forming an extended downstream flame zone with a relatively low temperature between 550 and 650 °C, which is favorable to the formation of S2*. The emission intensity of S2* and the signal-to-noise ratio (SNR) of sulfur response were enhanced 2.6- and 2.1-fold, respectively. It was found that the quartz rod of diameter 4 mm with a tip shape of semicircle placed 6 mm above the nozzle yielded the highest SNR. The limits of detection (LOD) for seven kinds of tested sulfur-containing compounds of qFPD were 0.3–0.5 pg S s–1, which is 5–7 times better than that of commercially available FPD detectors (LOD: 1.6–2.8 pg S s–1). The selectivity of sulfur over carbon was 105 on qFPD when the SNR for the mass flow rate of S and C atoms was ∼3 times. It was the first time that a quartz rod was used vertically on top of a microjet hydrogen-rich flame in FPD to enhance the chemiluminescence of S2* and improve the LOD down to 0.3–0.5 pg S s–1.
中文翻译:
用于硫检测的光度检测器中非预混合氢气微射流火焰中S 2 *的化学发光强度的增强
在火焰光度检测器(qFPD)中,垂直放置在未预混合的氢微射流火焰顶部的透明石英棒(q)进行了硫检测。由于柯恩达效应,微射流火焰在石英棒周围燃烧,形成了一个扩展的下游火焰区,温度在550至650°C之间,温度相对较低,这有利于S 2 *的形成。S 2 *的发射强度和硫响应的信噪比(SNR)分别提高了2.6倍和2.1倍。发现直径为4 mm的石英棒具有半圆形的尖端形状,位于喷嘴上方6 mm,产生最高的SNR。检验的7种qFPD含硫化合物的检出限(LOD)为0.3-0.5 pg S s–1,比市售FPD检测器(LOD:1.6–2.8 pg S s –1)好5–7倍。当S和C原子的质量流率的SNR约为3倍时,qFPD上硫对碳的选择性为10 5。这是第一次在FPD中的微喷射富氢火焰顶部垂直使用石英棒来增强S 2 *的化学发光,并将LOD降低至0.3–0.5 pg S s –1。
更新日期:2021-02-02
中文翻译:

用于硫检测的光度检测器中非预混合氢气微射流火焰中S 2 *的化学发光强度的增强
在火焰光度检测器(qFPD)中,垂直放置在未预混合的氢微射流火焰顶部的透明石英棒(q)进行了硫检测。由于柯恩达效应,微射流火焰在石英棒周围燃烧,形成了一个扩展的下游火焰区,温度在550至650°C之间,温度相对较低,这有利于S 2 *的形成。S 2 *的发射强度和硫响应的信噪比(SNR)分别提高了2.6倍和2.1倍。发现直径为4 mm的石英棒具有半圆形的尖端形状,位于喷嘴上方6 mm,产生最高的SNR。检验的7种qFPD含硫化合物的检出限(LOD)为0.3-0.5 pg S s–1,比市售FPD检测器(LOD:1.6–2.8 pg S s –1)好5–7倍。当S和C原子的质量流率的SNR约为3倍时,qFPD上硫对碳的选择性为10 5。这是第一次在FPD中的微喷射富氢火焰顶部垂直使用石英棒来增强S 2 *的化学发光,并将LOD降低至0.3–0.5 pg S s –1。