当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cascade Reactions by Nitric Oxide and Hydrogen Radical for Anti-Hypoxia Photodynamic Therapy Using an Activatable Photosensitizer
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2021-01-08 , DOI: 10.1021/jacs.0c10517
Jian Sun 1 , Xuetong Cai 1 , Chengjun Wang 2 , Ke Du 1 , Weijian Chen 1, 3 , Fude Feng 1 , Shu Wang 3
Affiliation  

Organelle-targeted activatable photosensitizers are attractive to improve the specificity and controllability of photodynamic therapy (PDT), however, they suffer from a big problem in the photoactivity under both normoxia and hypoxia due to the limited diversity of phototoxic species (mainly reactive oxygen species). Herein, by effectively photocaging a π-conjugated donor-acceptor (D-A) structure with an N-nitrosamine substituent, we established a unimolecular glutathione and light coactivatable photosensitizer, which achieved its high performance PDT effect by targeting mitochondria through both type I and type II (dual type) reactions as well as secondary radicals-participating reactions. Of peculiar interest, hydrogen radical (H•) was detected by electron spin resonance technique. The generation pathway of H• via reduction of proton and its role in type I reaction were discussed. We demonstrated that the synergistic effect of multiple reactive species originated from tandem cascade reactions comprising reduction of O2 by H• to form O2•-/HO2• and downstream reaction of O2•- with •NO to yield ONOO-. With a relatively large two-photon absorption cross section for photoexcitation in the near-infrared region (166 ± 22 GM at 800 nm) and fluorogenic property, the new photosensitizing system is very promising for broad biomedical applications, particularly low-light dose PDT, in both normoxic and hypoxic environments.

中文翻译:

一氧化氮和氢自由基的级联反应用于使用可活化光敏剂的抗缺氧光动力疗法

靶向细胞器的可激活光敏剂对于提高光动力疗法 (PDT) 的特异性和可控性很有吸引力,但是,由于光毒性物质(主要是活性氧)的多样性有限,它们在常氧和缺氧条件下的光活性都存在很大问题. 在此,我们通过用 N-亚硝胺取代基对 π 共轭供体-受体 (DA) 结构进行有效光笼锁,建立了单分子谷胱甘肽和光共激活光敏剂,通过 I 型和 II 型靶向线粒体实现了其高性能 PDT 效果(双重类型)反应以及二次自由基参与反应。特别令人感兴趣的是,氢自由基 (H•) 是通过电子自旋共振技术检测到的。讨论了质子还原生成H•的途径及其在I型反应中的作用。我们证明了多种反应物种的协同效应源自串联级联反应,包括通过 H• 还原 O2 形成 O2•-/HO2• 以及 O2•- 与 •NO 的下游反应生成 ONOO-。由于在近红外区域(800 nm 处为 166 ± 22 GM)的光激发具有相对较大的双光子吸收截面和荧光特性,新的光敏系统非常有希望用于广泛的生物医学应用,特别是低光剂量 PDT,在常氧和缺氧环境中。我们证明了多种反应物种的协同效应源自串联级联反应,包括通过 H• 还原 O2 形成 O2•-/HO2• 以及 O2•- 与 •NO 的下游反应生成 ONOO-。由于在近红外区域(800 nm 处为 166 ± 22 GM)的光激发具有相对较大的双光子吸收截面和荧光特性,新的光敏系统非常有希望用于广泛的生物医学应用,特别是低光剂量 PDT,在常氧和缺氧环境中。我们证明了多种反应物种的协同效应源自串联级联反应,包括通过 H• 还原 O2 形成 O2•-/HO2• 以及 O2•- 与 •NO 的下游反应生成 ONOO-。由于在近红外区域(800 nm 处为 166 ± 22 GM)的光激发具有相对较大的双光子吸收截面和荧光特性,新的光敏系统非常有希望用于广泛的生物医学应用,特别是低光剂量 PDT,在常氧和缺氧环境中。
更新日期:2021-01-08
down
wechat
bug