当前位置:
X-MOL 学术
›
Bioorg. Med. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Binding effect and design of a competitive inhibitory peptide for HMG-CoA reductase through modeling of an active peptide backbone.
Bioorganic & Medicinal Chemistry ( IF 3.3 ) Pub Date : 2008 Feb 1 , DOI: 10.1016/j.bmc.2007.10.064 Valeriy Viktorovich Pak , Minseon Koo , Min Jung Kim , Lyubov Yun , Dae Young Kwon
Bioorganic & Medicinal Chemistry ( IF 3.3 ) Pub Date : 2008 Feb 1 , DOI: 10.1016/j.bmc.2007.10.064 Valeriy Viktorovich Pak , Minseon Koo , Min Jung Kim , Lyubov Yun , Dae Young Kwon
This study presents an application of two approaches in the design of constrained and unconstrained peptides in an investigation of the peptide binding effect for HMG-CoA reductase (HMGR). In previous works, hypocholesterolemic peptides isolated from soybean were determined as competitive inhibitory peptides for HMGR. Based on the modeling of an active peptide backbone in the active site of HMGR, two peptide libraries for constrained and unconstrained peptides were designed using different amino acids varying in hydrophobicity and electronic properties. Active peptides were selected by the design parameter 'V' or 'Pr', which reflects the probability of active peptide conformations for constrained and unconstrained peptides, respectively. Using peptides designed as mimics of HMGR substrates, and a combination of in vitro test and circular dichroism study, it was found that: (1) peptide binding causes an ordering of secondary structure, reflecting an increase of alpha-helical content; (2) HMGR binds the peptide without closure of the active site; and (3) peptide binding induces the protein aggregation. The GFPDGG peptide (IC(50)=1.5 microM), designed on the basis of the rigid peptide backbone, increases the inhibitory potency more than 300 times compared to the first isolated LPYP peptide (IC(50)=484 microM) from soybean. The obtained data imply the possibility of designing a highly potent inhibitory peptide for HMGR and confirm that changes of the secondary structure in the enzyme play an important role in the mechanism of HMGR inhibition.
中文翻译:
通过对活性肽主链进行建模,对HMG-CoA还原酶进行竞争性抑制肽的结合效果和设计。
这项研究提出了两种方法在设计约束和非约束肽中的应用,用于研究HMG-CoA还原酶(HMGR)的肽结合效果。在以前的工作中,从大豆中分离出的降胆固醇胆固醇肽被确定为HMGR的竞争性抑制肽。基于HMGR活性位点中活性肽骨架的建模,使用疏水性和电子特性不同的氨基酸设计了两个约束肽和非约束肽的肽库。通过设计参数“ V”或“ Pr”选择活性肽,这分别反映了受约束肽和不受约束肽的活性肽构象的可能性。使用设计为HMGR底物模拟物的肽,结合体外试验和圆二色性研究,发现:(1)肽结合引起二级结构的有序化,反映了α-螺旋含量的增加;(2)HMGR结合肽而不封闭活性位点;(3)肽结合诱导蛋白质聚集。GFPDGG肽(IC(50)= 1.5 microM)是基于刚性肽主链设计的,与从大豆中分离出的第一个LPYP肽(IC(50)= 484 microM)相比,抑制力提高了300倍以上。所获得的数据暗示了设计针对HMGR的高效抑制肽的可能性,并证实了酶中二级结构的变化在HMGR抑制机理中起着重要作用。(1)肽结合引起二级结构的有序排列,反映了α-螺旋含量的增加;(2)HMGR结合肽而不封闭活性位点;(3)肽结合诱导蛋白质聚集。GFPDGG肽(IC(50)= 1.5 microM)是基于刚性肽主链设计的,与从大豆中分离出的第一个LPYP肽(IC(50)= 484 microM)相比,抑制力提高了300倍以上。所获得的数据暗示有可能设计一种用于HMGR的高效抑制肽,并证实酶中二级结构的改变在HMGR抑制机理中起重要作用。(1)肽结合引起二级结构的有序排列,反映了α-螺旋含量的增加;(2)HMGR结合肽而不封闭活性位点;(3)肽结合诱导蛋白质聚集。GFPDGG肽(IC(50)= 1.5 microM)是基于刚性肽主链设计的,与从大豆中分离出的第一个LPYP肽(IC(50)= 484 microM)相比,抑制力提高了300倍以上。所获得的数据暗示有可能设计一种用于HMGR的高效抑制肽,并证实酶中二级结构的改变在HMGR抑制机理中起重要作用。GFPDGG肽(IC(50)= 1.5 microM)是基于刚性肽主链设计的,与从大豆中分离出的第一个LPYP肽(IC(50)= 484 microM)相比,抑制力提高了300倍以上。所获得的数据暗示有可能设计一种用于HMGR的高效抑制肽,并证实酶中二级结构的改变在HMGR抑制机理中起重要作用。GFPDGG肽(IC(50)= 1.5 microM)是基于刚性肽主链设计的,与从大豆中分离出的第一个LPYP肽(IC(50)= 484 microM)相比,抑制力提高了300倍以上。所获得的数据暗示有可能设计一种用于HMGR的高效抑制肽,并证实酶中二级结构的改变在HMGR抑制机理中起重要作用。
更新日期:2017-01-31
中文翻译:
通过对活性肽主链进行建模,对HMG-CoA还原酶进行竞争性抑制肽的结合效果和设计。
这项研究提出了两种方法在设计约束和非约束肽中的应用,用于研究HMG-CoA还原酶(HMGR)的肽结合效果。在以前的工作中,从大豆中分离出的降胆固醇胆固醇肽被确定为HMGR的竞争性抑制肽。基于HMGR活性位点中活性肽骨架的建模,使用疏水性和电子特性不同的氨基酸设计了两个约束肽和非约束肽的肽库。通过设计参数“ V”或“ Pr”选择活性肽,这分别反映了受约束肽和不受约束肽的活性肽构象的可能性。使用设计为HMGR底物模拟物的肽,结合体外试验和圆二色性研究,发现:(1)肽结合引起二级结构的有序化,反映了α-螺旋含量的增加;(2)HMGR结合肽而不封闭活性位点;(3)肽结合诱导蛋白质聚集。GFPDGG肽(IC(50)= 1.5 microM)是基于刚性肽主链设计的,与从大豆中分离出的第一个LPYP肽(IC(50)= 484 microM)相比,抑制力提高了300倍以上。所获得的数据暗示了设计针对HMGR的高效抑制肽的可能性,并证实了酶中二级结构的变化在HMGR抑制机理中起着重要作用。(1)肽结合引起二级结构的有序排列,反映了α-螺旋含量的增加;(2)HMGR结合肽而不封闭活性位点;(3)肽结合诱导蛋白质聚集。GFPDGG肽(IC(50)= 1.5 microM)是基于刚性肽主链设计的,与从大豆中分离出的第一个LPYP肽(IC(50)= 484 microM)相比,抑制力提高了300倍以上。所获得的数据暗示有可能设计一种用于HMGR的高效抑制肽,并证实酶中二级结构的改变在HMGR抑制机理中起重要作用。(1)肽结合引起二级结构的有序排列,反映了α-螺旋含量的增加;(2)HMGR结合肽而不封闭活性位点;(3)肽结合诱导蛋白质聚集。GFPDGG肽(IC(50)= 1.5 microM)是基于刚性肽主链设计的,与从大豆中分离出的第一个LPYP肽(IC(50)= 484 microM)相比,抑制力提高了300倍以上。所获得的数据暗示有可能设计一种用于HMGR的高效抑制肽,并证实酶中二级结构的改变在HMGR抑制机理中起重要作用。GFPDGG肽(IC(50)= 1.5 microM)是基于刚性肽主链设计的,与从大豆中分离出的第一个LPYP肽(IC(50)= 484 microM)相比,抑制力提高了300倍以上。所获得的数据暗示有可能设计一种用于HMGR的高效抑制肽,并证实酶中二级结构的改变在HMGR抑制机理中起重要作用。GFPDGG肽(IC(50)= 1.5 microM)是基于刚性肽主链设计的,与从大豆中分离出的第一个LPYP肽(IC(50)= 484 microM)相比,抑制力提高了300倍以上。所获得的数据暗示有可能设计一种用于HMGR的高效抑制肽,并证实酶中二级结构的改变在HMGR抑制机理中起重要作用。