当前位置:
X-MOL 学术
›
Energy Fuels
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Biohydrogen Production Amended with Nitrogen-Doped Biochar
Energy & Fuels ( IF 5.2 ) Pub Date : 2021-01-08 , DOI: 10.1021/acs.energyfuels.0c03405 Jishi Zhang 1 , Mengchen Yang 1 , Wenqian Zhao 1 , Junchu Zhang 1 , Lihua Zang 1
Energy & Fuels ( IF 5.2 ) Pub Date : 2021-01-08 , DOI: 10.1021/acs.energyfuels.0c03405 Jishi Zhang 1 , Mengchen Yang 1 , Wenqian Zhao 1 , Junchu Zhang 1 , Lihua Zang 1
Affiliation
Conductive materials play a vital role in electron transfer during the hydrogen (H2) fermentation process. In this work, a novel nitrogen-doped biochar (NDBC) was produced from corncob to improve biohydrogen production at 37 °C. Material analysis revealed that the nitrogen-rich biochar (BC) had a specific surface area of 831.13 m2/g, which was slightly lower than that of the corncob-derived BC (944.09 m2/g), while the electrical conductivity of the former was 13.91 times higher than that of the latter. The highest H2 yield of 230 mL/g glucose was obtained at 600 mg/L NDBC, which was higher than the corncob-derived BC (159 mL/g glucose) and control (without any BC) (140 mL/g glucose) group yields. The microbial community structure illustrated that NDBC greatly reduced the abundance of Dysgonomonas (9.2%) and increased the abundance of Clostridium butyricum (10.9%). The NDBC and corncob-derived BC materials played obviously different roles: the former enriched the dominant bacteria and acted as an electron conduit promoting electron transfer, while the latter mainly provided favorable sites for microbial colonization. The results also indicated that cleaner energy production with a high H2 yield was attained with the nitrogen-doped BC material.
中文翻译:
掺氮生物炭对生物氢生产的修正
在氢(H 2)发酵过程中,导电材料在电子转移中起着至关重要的作用。在这项工作中,从玉米芯中制备了一种新型的氮掺杂生物炭(NDBC),以提高37°C时的生物氢产量。材料分析表明,富氮生物炭(BC)的比表面积为831.13 m 2 / g,比玉米芯衍生的BC(944.09 m 2 / g)略低,而其电导率前者是后者的13.91倍。最高H 2在600 mg / L NDBC下获得230 mL / g葡萄糖的产率,高于玉米芯衍生的BC(159 mL / g葡萄糖)和对照组(无任何BC)(140 mL / g葡萄糖)的产率。微生物群落结构说明的是NDBC大大降低的丰度Dysgonomonas(9.2%)和增加的丰度丁酸梭菌(10.9%)。NDBC和玉米芯衍生的BC材料起着明显不同的作用:前者富集优势细菌并充当促进电子转移的电子导管,而后者主要为微生物定殖提供了有利的场所。结果还表明,用氮掺杂的BC材料可实现更高H 2收率的清洁能源生产。
更新日期:2021-01-21
中文翻译:
掺氮生物炭对生物氢生产的修正
在氢(H 2)发酵过程中,导电材料在电子转移中起着至关重要的作用。在这项工作中,从玉米芯中制备了一种新型的氮掺杂生物炭(NDBC),以提高37°C时的生物氢产量。材料分析表明,富氮生物炭(BC)的比表面积为831.13 m 2 / g,比玉米芯衍生的BC(944.09 m 2 / g)略低,而其电导率前者是后者的13.91倍。最高H 2在600 mg / L NDBC下获得230 mL / g葡萄糖的产率,高于玉米芯衍生的BC(159 mL / g葡萄糖)和对照组(无任何BC)(140 mL / g葡萄糖)的产率。微生物群落结构说明的是NDBC大大降低的丰度Dysgonomonas(9.2%)和增加的丰度丁酸梭菌(10.9%)。NDBC和玉米芯衍生的BC材料起着明显不同的作用:前者富集优势细菌并充当促进电子转移的电子导管,而后者主要为微生物定殖提供了有利的场所。结果还表明,用氮掺杂的BC材料可实现更高H 2收率的清洁能源生产。