当前位置:
X-MOL 学术
›
Inorg. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Long Afterglow of a Nonporous Coordination Polymer with Tunable Room-Temperature Phosphorescence by the Doping of Dye Molecules
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2021-01-06 , DOI: 10.1021/acs.inorgchem.0c02888
Hai-Xia Wu 1 , Xiao-Min Lu 1, 2 , Jia-Yi Chen 1 , Xiao-Gang Yang 1 , Wen-Jing Qin 1, 2 , Lu-Fang Ma 1, 2
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2021-01-06 , DOI: 10.1021/acs.inorgchem.0c02888
Hai-Xia Wu 1 , Xiao-Min Lu 1, 2 , Jia-Yi Chen 1 , Xiao-Gang Yang 1 , Wen-Jing Qin 1, 2 , Lu-Fang Ma 1, 2
Affiliation
![]() |
Metal–organic frameworks (MOFs) or coordination polymers (CPs)-based phosphorescence materials may provide a powerful route for photoelectric and optical recording devices. Herein, two phosphorescence ligands, iso-phthalic acid (IPA) and 2-methylimidazole (MIM), were selected to construct an nonporous CP {Zn(IPA)(MIM)2} (1) with a long-lived phosphorescence lifetime up to 552 ms. By the doping of Eosin Y (EY) dye molecules under an in situ process, the phosphorescence emission color of 1 can be expressly tuned from green to red. The light-harvesting range can also be vastly broadened from the UV to the visible region (550 nm). Photoelectron measurements reveal that the synergistic effect of bias voltage and illumination can greatly restrain electron–hole recombination for the generation of additional free charges.
中文翻译:
掺杂染料分子可调节室温磷光的无孔配位聚合物的长余辉
基于金属有机骨架(MOF)或配位聚合物(CP)的磷光材料可能为光电和光学记录设备提供强大的途径。本文中,选择了两种磷光配体,即间苯二甲酸(IPA)和2-甲基咪唑(MIM),以构建无孔CP {Zn(IPA)(MIM)2 }(1),具有长寿命的磷光寿命552毫秒 通过在原位过程中对曙红Y(EY)染料分子进行掺杂,磷光发射色为1可以明确地从绿色调到红色。从紫外线到可见光区域(550 nm)的光收集范围也可以大大扩大。光电子测量表明,偏置电压和照明的协同作用可以极大地抑制电子-空穴复合,以产生额外的自由电荷。
更新日期:2021-01-18
中文翻译:

掺杂染料分子可调节室温磷光的无孔配位聚合物的长余辉
基于金属有机骨架(MOF)或配位聚合物(CP)的磷光材料可能为光电和光学记录设备提供强大的途径。本文中,选择了两种磷光配体,即间苯二甲酸(IPA)和2-甲基咪唑(MIM),以构建无孔CP {Zn(IPA)(MIM)2 }(1),具有长寿命的磷光寿命552毫秒 通过在原位过程中对曙红Y(EY)染料分子进行掺杂,磷光发射色为1可以明确地从绿色调到红色。从紫外线到可见光区域(550 nm)的光收集范围也可以大大扩大。光电子测量表明,偏置电压和照明的协同作用可以极大地抑制电子-空穴复合,以产生额外的自由电荷。