当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electrochemical Characteristics of a Polymer/Garnet Trilayer Composite Electrolyte for Solid-State Lithium-Metal Batteries
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-01-06 , DOI: 10.1021/acsami.0c17422 Kumlachew Zelalem Walle, Lakshmipriya Musuvadhi Babulal, She−Huang Wu, Wen-Chen Chien, Rajan Jose, Shingjiang Jessie Lue, Jeng-Kuei Chang, Chun-Chen Yang
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-01-06 , DOI: 10.1021/acsami.0c17422 Kumlachew Zelalem Walle, Lakshmipriya Musuvadhi Babulal, She−Huang Wu, Wen-Chen Chien, Rajan Jose, Shingjiang Jessie Lue, Jeng-Kuei Chang, Chun-Chen Yang
Although solid-state Li-metal batteries (LMBs) featuring polymer-based solid electrolytes might one day replace conventional Li-ion batteries, the poor Li-ion conductivity of solid polymer electrolytes at low temperatures has hindered their practical applications. Herein, we describe the first example of using a co-precipitation method in a Taylor flow reactor to produce the metal hydroxides of both the Ga/F dual-doped Li7La3Zr2O12 (Ga/F-LLZO) ceramic electrolyte precursors and the Li2MoO4-modified Ni0.8Co0.1Mn0.1O2 (LMO@T-LNCM 811) cathode materials for LMBs. The Li/Nafion (LiNf)-coated Ga/F-LLZO (LiNf@Ga/F-LLZO) ceramic filler was finely dispersed in the poly(vinylidene fluoride)/polyacrylonitrile/lithium bis(trifluoromethanesulfonimide)/succinonitrile matrix to give a trilayer composite polymer electrolyte (denoted “Tri-CPE”) through a simple solution-casting. The bulk ionic conductivity of the Tri-CPE at room temperature was approximately 4.50 × 10–4 S cm–1 and exhibited a high Li+ ion transference number (0.84). It also exhibits a broader electrochemical window of 1–5.04 V versus Li/Li+. A full cell based on a CR2032 coin cell containing the LMO@T-LNCM811-based composite cathode, when cycled under 1 C/1 C at room temperature for 300 cycles, achieved an average Columbic efficiency of 99.4% and a capacity retention of 89.8%. This novel fabrication strategy for Tri-CPE structures has potential applications in the preparation of highly safe high-voltage cathodes for solid-state LMBs.
中文翻译:
固态锂金属电池用聚合物/石榴石三层复合电解质的电化学特性
尽管具有聚合物基固体电解质的固态锂金属电池(LMB)有一天可能会取代传统的锂离子电池,但是固态聚合物电解质在低温下较差的锂离子传导性阻碍了它们的实际应用。本文中,我们描述了在泰勒流动反应器中使用共沉淀法生产Ga / F双掺杂Li 7 La 3 Zr 2 O 12(Ga / F-LLZO)陶瓷电解质的金属氢氧化物的第一个示例前驱体和Li 2 MoO 4改性的Ni 0.8 Co 0.1 Mn 0.1 O 2LMB的(LMO @ T-LNCM 811)阴极材料。将Li / Nafion(LiNf)涂层的Ga / F-LLZO(LiNf @ Ga / F-LLZO)陶瓷填料精细分散在聚偏二氟乙烯/聚丙烯腈/双(三氟甲烷磺酰亚胺)锂/琥珀腈基质中,得到三层通过简单的溶液浇铸法制备复合聚合物电解质(称为“ Tri-CPE”)。室温下Tri-CPE的整体离子电导率约为4.50×10 -4 S cm -1,并且具有较高的Li +离子转移数(0.84)。与Li / Li +相比,它还具有1–5.04 V的更宽的电化学窗口。基于CR2032纽扣电池的完整电池(包含基于LMO @ T-LNCM811的复合阴极)在室温下于1 C / 1 C下循环300个循环时,平均哥伦布效率为99.4%,容量保持率为89.8 %。Tri-CPE结构的这种新颖的制造策略在制备用于固态LMB的高度安全的高压阴极方面具有潜在的应用前景。
更新日期:2021-01-20
中文翻译:
固态锂金属电池用聚合物/石榴石三层复合电解质的电化学特性
尽管具有聚合物基固体电解质的固态锂金属电池(LMB)有一天可能会取代传统的锂离子电池,但是固态聚合物电解质在低温下较差的锂离子传导性阻碍了它们的实际应用。本文中,我们描述了在泰勒流动反应器中使用共沉淀法生产Ga / F双掺杂Li 7 La 3 Zr 2 O 12(Ga / F-LLZO)陶瓷电解质的金属氢氧化物的第一个示例前驱体和Li 2 MoO 4改性的Ni 0.8 Co 0.1 Mn 0.1 O 2LMB的(LMO @ T-LNCM 811)阴极材料。将Li / Nafion(LiNf)涂层的Ga / F-LLZO(LiNf @ Ga / F-LLZO)陶瓷填料精细分散在聚偏二氟乙烯/聚丙烯腈/双(三氟甲烷磺酰亚胺)锂/琥珀腈基质中,得到三层通过简单的溶液浇铸法制备复合聚合物电解质(称为“ Tri-CPE”)。室温下Tri-CPE的整体离子电导率约为4.50×10 -4 S cm -1,并且具有较高的Li +离子转移数(0.84)。与Li / Li +相比,它还具有1–5.04 V的更宽的电化学窗口。基于CR2032纽扣电池的完整电池(包含基于LMO @ T-LNCM811的复合阴极)在室温下于1 C / 1 C下循环300个循环时,平均哥伦布效率为99.4%,容量保持率为89.8 %。Tri-CPE结构的这种新颖的制造策略在制备用于固态LMB的高度安全的高压阴极方面具有潜在的应用前景。