Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
All-Dielectric Synthetic-Phase Metasurfaces Generating Practical Airy Beams
ACS Nano ( IF 15.8 ) Pub Date : 2021-01-05 , DOI: 10.1021/acsnano.0c07770 Jing Wen 1 , Lei Chen 1 , Binbin Yu 1 , Jana B. Nieder 2 , Songlin Zhuang 1 , Dawei Zhang 1 , Dangyuan Lei 3
ACS Nano ( IF 15.8 ) Pub Date : 2021-01-05 , DOI: 10.1021/acsnano.0c07770 Jing Wen 1 , Lei Chen 1 , Binbin Yu 1 , Jana B. Nieder 2 , Songlin Zhuang 1 , Dawei Zhang 1 , Dangyuan Lei 3
Affiliation
Accelerating optical beams exhibit exotic features, such as nondiffractive propagation, self-acceleration, and self-healing, which have led their use in a wide range of photonics applications. However, spatial light modulator-based generators of such beams suffer from narrow operational bandwidth, high cost, low diffraction efficiency, and limited integration capability. Although recent metasurface-based approaches have yielded generators with significantly improved bandwidths and integration capacities, the resultant devices usually have ultrashort working distances and limited control over characteristic beam parameters, which decreases their utility in optical imaging and manipulation applications. Herein, we describe a synthetic-phase metasurface-based approach that overcomes these problems and increases the degrees of freedom to enable effective control of beam parameters by integrating a cubic phase profile and the phase of a Fresnel holographic lens into a single metasurface. We demonstrate this approach by using the synthetic metasurface to generate a series of Airy beams with controllable focal length (i.e., working distance), narrowed beam width, and extended propagation distance. Crucially, these beam parameters are fully adjustable, which makes these focal-length-modifiable Airy beams particularly appealing for use in high-resolution, large field-of-view imaging, and deep-penetration optical manipulation. Furthermore, we show that imposing the phase of a Dammann grating into a synthetic metasurface generates a 1 × 4 array of Airy beams that exhibit the aforementioned optical properties. These findings suggest that synthetic-phase metasurfaces may significantly broaden the application of accelerating optical beams in various fields, such as light-sheet microscopy, super-resolution stochastic optical-reconstruction microscopy, laser fabrication, and parallel processing and in the development of optical tweezers for use with live samples.
中文翻译:
全介电合成相超表面产生实用的光束
加速光束展现出奇异的特征,例如非衍射传播,自加速和自修复,这导致了它们在广泛的光子学应用中的使用。但是,这种光束的基于空间光调制器的发生器具有工作带宽窄,成本高,衍射效率低以及集成能力有限的缺点。尽管最近的基于超表面的方法已经使发生器具有显着改善的带宽和集成能力,但所得设备通常具有超短工作距离和对特征光束参数的有限控制,这降低了它们在光学成像和操纵应用中的效用。在这里 我们描述了一种基于合成相超颖表面的方法,该方法克服了这些问题并通过将立方相轮廓和菲涅耳全息透镜的相位集成到单个超颖表面中来提高自由度,从而能够有效控制光束参数。我们通过使用合成超颖表面生成一系列具有可控制焦距的艾里光束来证明这种方法(即,工作距离),射束宽度变窄和传播距离延长。至关重要的是,这些光束参数是完全可调的,这使得这些可调节焦距的艾里光束特别适合用于高分辨率,大视野成像和深穿透光学操作。此外,我们表明,将达曼光栅的相位强加到合成超颖表面上会产生1×4的艾里光束阵列,这些阵列具有上述光学特性。这些发现表明,合成相超表面可能会极大地扩展加速光束在各种领域的应用,例如光片显微镜,超分辨率随机光学重建显微镜,激光制造,并行处理以及光镊的开发。用于现场样品。
更新日期:2021-01-26
中文翻译:
全介电合成相超表面产生实用的光束
加速光束展现出奇异的特征,例如非衍射传播,自加速和自修复,这导致了它们在广泛的光子学应用中的使用。但是,这种光束的基于空间光调制器的发生器具有工作带宽窄,成本高,衍射效率低以及集成能力有限的缺点。尽管最近的基于超表面的方法已经使发生器具有显着改善的带宽和集成能力,但所得设备通常具有超短工作距离和对特征光束参数的有限控制,这降低了它们在光学成像和操纵应用中的效用。在这里 我们描述了一种基于合成相超颖表面的方法,该方法克服了这些问题并通过将立方相轮廓和菲涅耳全息透镜的相位集成到单个超颖表面中来提高自由度,从而能够有效控制光束参数。我们通过使用合成超颖表面生成一系列具有可控制焦距的艾里光束来证明这种方法(即,工作距离),射束宽度变窄和传播距离延长。至关重要的是,这些光束参数是完全可调的,这使得这些可调节焦距的艾里光束特别适合用于高分辨率,大视野成像和深穿透光学操作。此外,我们表明,将达曼光栅的相位强加到合成超颖表面上会产生1×4的艾里光束阵列,这些阵列具有上述光学特性。这些发现表明,合成相超表面可能会极大地扩展加速光束在各种领域的应用,例如光片显微镜,超分辨率随机光学重建显微镜,激光制造,并行处理以及光镊的开发。用于现场样品。