当前位置:
X-MOL 学术
›
J. Differ. Geom.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Geodesic behavior for Finsler metrics of constant positive flag curvature on $S^2$
Journal of Differential Geometry ( IF 1.3 ) Pub Date : 2021-01-01 , DOI: 10.4310/jdg/1609902015 R. L. Bryant 1 , P. Foulon 2 , S. V. Ivanov 3 , V. S. Matveev 4 , W. Ziller 5
Journal of Differential Geometry ( IF 1.3 ) Pub Date : 2021-01-01 , DOI: 10.4310/jdg/1609902015 R. L. Bryant 1 , P. Foulon 2 , S. V. Ivanov 3 , V. S. Matveev 4 , W. Ziller 5
Affiliation
We study non-reversible Finsler metrics with constant flag curvature 1 on S^2 and show that the geodesic flow of every such metric is conjugate to that of one of Katok's examples, which form a 1-parameter family. In particular, the length of the shortest closed geodesic is a complete invariant of the geodesic flow. We also show, in any dimension, that the geodesic flow of a Finsler metrics with constant positive flag curvature is completely integrable. Finally, we give an example of a Finsler metric on~$S^2$ with positive flag curvature such that no two closed geodesics intersect and show that this is not possible when the metric is reversible or have constant flag curvature
中文翻译:
$S^2$ 上恒定正旗曲率的 Finsler 度量的测地线行为
我们研究了 S^2 上具有恒定标志曲率 1 的不可逆 Finsler 度量,并表明每个此类度量的测地线流与 Katok 示例之一的测地线流共轭,形成一个 1 参数族。特别地,最短闭合测地线的长度是测地线流的完全不变量。我们还表明,在任何维度上,具有恒定正旗曲率的 Finsler 度量的测地线流是完全可积分的。最后,我们给出了一个在~$S^2$ 上具有正旗曲率的 Finsler 度量的例子,这样没有两个封闭的测地线相交,并表明当度量是可逆的或具有恒定的旗曲率时这是不可能的
更新日期:2021-01-01
中文翻译:
$S^2$ 上恒定正旗曲率的 Finsler 度量的测地线行为
我们研究了 S^2 上具有恒定标志曲率 1 的不可逆 Finsler 度量,并表明每个此类度量的测地线流与 Katok 示例之一的测地线流共轭,形成一个 1 参数族。特别地,最短闭合测地线的长度是测地线流的完全不变量。我们还表明,在任何维度上,具有恒定正旗曲率的 Finsler 度量的测地线流是完全可积分的。最后,我们给出了一个在~$S^2$ 上具有正旗曲率的 Finsler 度量的例子,这样没有两个封闭的测地线相交,并表明当度量是可逆的或具有恒定的旗曲率时这是不可能的