当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental considerations to study Li-excess disordered rock salt cathode materials
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2020-12-15 , DOI: 10.1039/d0ta07836k
Hyeseung Chung 1, 2, 3, 4 , Zachary Lebens-Higgins 4, 5, 6, 7 , Baharak Sayahpour 1, 2, 3, 4 , Carlos Mejia 1, 2, 3, 4 , Antonin Grenier 4, 8, 9, 10 , Gabrielle E. Kamm 4, 8, 9, 10 , Yixuan Li 1, 2, 3, 4 , Ricky Huang 1, 2, 3, 4 , Louis F. J. Piper 4, 5, 6, 7 , Karena W. Chapman 4, 8, 9, 10 , Jean-Marie Doux 1, 2, 3, 4 , Ying Shirley Meng 1, 2, 3, 4
Affiliation  

Cation-disordered rock salt materials have attracted much interest as high energy density cathode materials due to their anionic electrochemical activity, providing them extra capacity, along with their lower cost. They are, however, still the subject of numerous studies as they suffer from poor cyclability and relatively slow kinetics compared to traditional intercalation materials. In this work, several important experimental considerations, that must be taken into account when studying Li-excess cation disordered rock salt cathode materials, are introduced. First, the key synthesis parameters were identified to enable a lower-temperature, morphology-controlled synthesis of the Li3NbO4-based disordered rock salt cathodes Li1.3TM0.4Nb0.3O2 (TM = Fe, Mn), using nano-sized precursors. After evaluating the influence of the morphology on the cyclability of the electrode, two key challenges that hinder the practical implementation of these systems are revealed – ambient air-induced surface contamination and electrolyte compatibility. Thermal gravimetric analysis and X-ray diffraction on the nano-sized cathodes confirmed that prolonged air exposure generates a large amount of surface species, responsible for the large decrease in the first discharge capacity. Moreover, the influence of the electrolyte on the evolution of the cathode–electrolyte interphase was investigated using X-ray photoelectron spectroscopy. The results show that cation-disordered rock salt cathodes go through significant Li-salt degradation and develop thick cathode–electrolyte interphase with the electrolytes compatible with Li-excess layered cathode materials Li[Li0.144Ni0.136Co0.136Mn0.544]O2, highlighting the importance of evaluating and finding compatible battery chemistries.

中文翻译:

研究锂过量无序岩盐正极材料的实验考虑

阳离子无序的岩盐材料由于其阴离子电化学活性,为它们提供了额外的容量以及较低的成本,因此作为高能量密度的阴极材料吸引了很多兴趣。然而,由于它们与传统的插层材料相比,其循环性差且动力学相对较慢,因此仍然是许多研究的主题。在这项工作中,介绍了一些重要的实验考虑因素,在研究锂过量阳离子无序岩石盐阴极材料时必须考虑这些因素。首先,确定了关键的合成参数,以实现低温,形态控制下的基于Li 3 NbO 4的无序岩盐阴极Li 1.3 TM 0.4的合成。0.3 O 2(TM = Fe,Mn),使用纳米级前体。在评估了形态对电极可循环性的影响之后,发现了阻碍这些系统实际实施的两个关键挑战–环境空气诱导的表面污染和电解质的相容性。在纳米级阴极上的热重分析和X射线衍射证实,长时间暴露在空气中会产生大量表面物质,这是导致首次放电容量大幅下降的原因。此外,使用X射线光电子能谱研究了电解质对阴极-电解质界面相演变的影响。0.144 Ni 0.136 Co 0.136 Mn 0.544 ] O 2,突出了评估和发现兼容电池化学性质的重要性。
更新日期:2021-01-04
down
wechat
bug