当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Selective Electrochemical Alkaline Seawater Oxidation Catalyzed by Cobalt Carbonate Hydroxide Nanorod Arrays with Sequential Proton-Electron Transfer Properties
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2021-01-04 , DOI: 10.1021/acssuschemeng.0c07953 Gang Li 1 , Fusheng Li 1 , Yilong Zhao 1 , Wenlong Li 1 , Ziqi Zhao 1 , Yingzheng Li 1 , Hao Yang 2 , Ke Fan 1 , Peili Zhang 1 , Licheng Sun 1, 2, 3
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2021-01-04 , DOI: 10.1021/acssuschemeng.0c07953 Gang Li 1 , Fusheng Li 1 , Yilong Zhao 1 , Wenlong Li 1 , Ziqi Zhao 1 , Yingzheng Li 1 , Hao Yang 2 , Ke Fan 1 , Peili Zhang 1 , Licheng Sun 1, 2, 3
Affiliation
Seawater oxygen evolution is one of the promising energy conversion technologies for large-scale renewable energy storage. It requires efficient catalysts to accelerate the oxygen evolution reaction (OER) for sustained water oxidation, avoiding chlorine evolution under acidic conditions or hypochlorite formation in alkaline solutions. Conventional metal oxide-based OER catalysts follow the adsorbate evolution mechanism that involves concerted proton-electron transfer steps at the active sites. Thus, on the scale of reversible hydrogen electrode, their catalytic activity is independent of the pH of electrolytes. In the present study, nanostructured cobalt carbonate hydroxide (CoCH) with sequential proton-electron transfer properties was tested as a catalyst for seawater oxygen evolution. CoCH exhibited pH-dependent water oxidation activities, thereby providing larger potential and current operating windows for selective water oxidation compared to the catalysts with pH-independent OER activities. The operating window can be further expanded by increasing the pH of the electrolyte.
中文翻译:
具有顺序质子-电子转移性质的碳酸钴氢氧化物纳米棒阵列催化选择性电化学碱性海水氧化
海水中氧气的释放是用于大规模可再生能源存储的有前途的能源转换技术之一。它需要有效的催化剂来加速氧气释放反应(OER),以实现持续的水氧化,避免在酸性条件下释放氯气或在碱性溶液中形成次氯酸盐。常规的基于金属氧化物的OER催化剂遵循吸附剂释放机理,该机理涉及在活性位点进行协调的质子电子转移步骤。因此,在可逆氢电极的规模上,它们的催化活性与电解质的pH无关。在本研究中,具有连续质子电子转移性质的纳米结构的碳酸钴氢氧化物(CoCH)被测试为海水中氧气释放的催化剂。CoCH表现出pH依赖性的水氧化活性,与具有不依赖pH值的OER活性的催化剂相比,从而为选择性水氧化提供了更大的潜力和当前的操作窗口。通过增加电解质的pH值可以进一步扩大操作范围。
更新日期:2021-01-18
中文翻译:
具有顺序质子-电子转移性质的碳酸钴氢氧化物纳米棒阵列催化选择性电化学碱性海水氧化
海水中氧气的释放是用于大规模可再生能源存储的有前途的能源转换技术之一。它需要有效的催化剂来加速氧气释放反应(OER),以实现持续的水氧化,避免在酸性条件下释放氯气或在碱性溶液中形成次氯酸盐。常规的基于金属氧化物的OER催化剂遵循吸附剂释放机理,该机理涉及在活性位点进行协调的质子电子转移步骤。因此,在可逆氢电极的规模上,它们的催化活性与电解质的pH无关。在本研究中,具有连续质子电子转移性质的纳米结构的碳酸钴氢氧化物(CoCH)被测试为海水中氧气释放的催化剂。CoCH表现出pH依赖性的水氧化活性,与具有不依赖pH值的OER活性的催化剂相比,从而为选择性水氧化提供了更大的潜力和当前的操作窗口。通过增加电解质的pH值可以进一步扩大操作范围。