Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2020-12-31 , DOI: 10.1016/j.apcatb.2020.119823 Enzhu Lin , Zihan Kang , Jiang Wu , Rui Huang , Ni Qin , Dinghua Bao
![]() |
The selective deposition of noble metals on catalysts is an attractive modification method for improving catalytic efficiency. However, it is sometimes hard to achieve when facet energies of nano-catalysts show negligible differences. Here, we reported a piezoelectrochemical method which can realize the selective deposition of Ag nanoparticles on the positively polar end of {001}-enclosed BaTiO3 (BTO) nanocubes/cuboids. Furthermore, BTO nanocubes/cuboids with selectively-deposited Ag nanoparticles show approximately 2 times higher piezocatalytic activity than those with randomly-loaded Ag nanoparticles, and much higher than pure BTO nanocubes/cuboids. The piezocatalytic mechanism revealed that the Ag nanoparticles deposited on positively polar end act as “fast lanes” for electrons to transfer to catalysts/solution interfaces, while those loaded on negatively polar end serve as holes trappers hindering ∙OH formation and pollutant degradation. This work confirms an efficient way to improve piezocatalytic performance and provides an insightful discussion of piezocatalytic mechanism.
中文翻译:

具有选择性沉积的Ag纳米粒子的BaTiO 3纳米立方/立方:有效的压电催化降解及其机理
贵金属在催化剂上的选择性沉积是用于提高催化效率的有吸引力的改性方法。然而,当纳米催化剂的小面能量显示出可忽略的差异时,有时很难实现。在这里,我们报道了一种压电电化学方法,该方法可以实现在{001}包围的BaTiO 3的正极末端选择性沉积Ag纳米粒子(BTO)纳米立方体/立方体。此外,具有选择性沉积的Ag纳米颗粒的BTO纳米立方体/立方体比具有随机负载的Ag纳米颗粒的压电催化活性高约2倍,远高于纯BTO纳米立方体/立方体。压电催化机理表明,沉积在正极末端的Ag纳米粒子充当电子转移到催化剂/溶液界面的“快速通道”,而负载在负极末端的纳米粒子充当阻碍∙OH形成和污染物降解的空穴陷阱。这项工作证实了提高压电催化性能的有效方法,并提供了对压电催化机理的有见地的讨论。