当前位置:
X-MOL 学术
›
J. Phys. Chem. B
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Liquid–Liquid Phase Separation of Peptide/Oligonucleotide Complexes in Crowded Macromolecular Media
The Journal of Physical Chemistry B ( IF 2.8 ) Pub Date : 2020-12-29 , DOI: 10.1021/acs.jpcb.0c09225 Qingwen Bai 1 , Qiufen Zhang 1 , Hairong Jing 1 , Jiaxin Chen 1 , Dehai Liang 1
The Journal of Physical Chemistry B ( IF 2.8 ) Pub Date : 2020-12-29 , DOI: 10.1021/acs.jpcb.0c09225 Qingwen Bai 1 , Qiufen Zhang 1 , Hairong Jing 1 , Jiaxin Chen 1 , Dehai Liang 1
Affiliation
The membraneless organelles (MLOs) and coacervates of oppositely charged polyelectrolytes are both formed by liquid–liquid phase separation. To reveal how the crowded cell interior regulates the MLOs, we chose the coacervates formed by peptide S5 and single-stranded oligonucleotide (ss-oligo) at 1:1 charge ratio and investigated the phase separation processes in polyacrylamide (PAM) and poly(ethylene oxide) (PEO) media at varying concentrations. Results show that the droplet formation unit is the neutral primary complex, instead of individual S5 or ss-oligo. Therefore, the coacervation process can be described by the classic theory of nucleation and growth. The dynamic scaling relationships show that S5/ss-oligo coacervation undergoes in sequence the heterogeneous nucleation, diffusion-limited growth, and Brownian motion coalescence with time. The inert crowders generate multiple effects, including accelerating the growth of droplets, weakening the electrostatic attraction, and slowing down or even trapping the droplets in the crowder network. The overall effect is that both the size and size distribution of the droplets decrease with increasing crowder concentration, and the effect of PEO is stronger than that of PAM. Our study provides a further step toward a deeper understanding of the kinetics of MLOs in crowded living cells.
中文翻译:
拥挤的高分子介质中肽/寡核苷酸复合物的液相分离
带相反电荷的聚电解质的无膜细胞器(MLO)和凝聚层均通过液相分离形成。为了揭示拥挤的细胞内部如何调节MLO,我们选择了由肽S5和单链寡核苷酸(ss-oligo)以1:1电荷比形成的凝聚层,并研究了聚丙烯酰胺(PAM)和聚乙烯中的相分离过程氧化物(PEO)介质的浓度不同。结果表明,液滴形成单位是中性的初级复合物,而不是单个的S5或ss-oligo。因此,凝聚过程可以用经典的成核和生长理论来描述。动态比例关系显示,S5 / ss-寡聚凝聚按时间顺序经历异质成核,扩散受限生长和布朗运动聚结。惰性拥挤器会产生多种效果,包括加速液滴的生长,减弱静电吸引力以及减慢或什至将液滴滞留在拥挤器网络中。总体效果是,液滴的尺寸和大小分布都随着拥挤剂浓度的增加而减小,而PEO的效果要强于PAM。我们的研究为进一步了解拥挤的活细胞中的MLO动力学提供了进一步的步骤。PEO的效果要强于PAM。我们的研究为进一步了解拥挤的活细胞中的MLO动力学提供了进一步的步骤。PEO的效果要强于PAM。我们的研究为进一步了解拥挤的活细胞中的MLO动力学提供了进一步的步骤。
更新日期:2021-01-14
中文翻译:
拥挤的高分子介质中肽/寡核苷酸复合物的液相分离
带相反电荷的聚电解质的无膜细胞器(MLO)和凝聚层均通过液相分离形成。为了揭示拥挤的细胞内部如何调节MLO,我们选择了由肽S5和单链寡核苷酸(ss-oligo)以1:1电荷比形成的凝聚层,并研究了聚丙烯酰胺(PAM)和聚乙烯中的相分离过程氧化物(PEO)介质的浓度不同。结果表明,液滴形成单位是中性的初级复合物,而不是单个的S5或ss-oligo。因此,凝聚过程可以用经典的成核和生长理论来描述。动态比例关系显示,S5 / ss-寡聚凝聚按时间顺序经历异质成核,扩散受限生长和布朗运动聚结。惰性拥挤器会产生多种效果,包括加速液滴的生长,减弱静电吸引力以及减慢或什至将液滴滞留在拥挤器网络中。总体效果是,液滴的尺寸和大小分布都随着拥挤剂浓度的增加而减小,而PEO的效果要强于PAM。我们的研究为进一步了解拥挤的活细胞中的MLO动力学提供了进一步的步骤。PEO的效果要强于PAM。我们的研究为进一步了解拥挤的活细胞中的MLO动力学提供了进一步的步骤。PEO的效果要强于PAM。我们的研究为进一步了解拥挤的活细胞中的MLO动力学提供了进一步的步骤。