当前位置:
X-MOL 学术
›
Adv. Opt. Photon.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fundamentals of Automated Human Gesture Recognition using 3D Optical Imaging: A Tutorial
Advances in Optics and Photonics ( IF 25.2 ) Pub Date : 2020-12-14 , DOI: 10.1364/aop.390929 Bahram Javidi , Filiberto Pla , José M. Sotoca , Xin Shen , Pedro Latorre-Carmona , Manuel Martínez-Corral , Rubén Fernández-Beltrán , Gokul Krishnan
Advances in Optics and Photonics ( IF 25.2 ) Pub Date : 2020-12-14 , DOI: 10.1364/aop.390929 Bahram Javidi , Filiberto Pla , José M. Sotoca , Xin Shen , Pedro Latorre-Carmona , Manuel Martínez-Corral , Rubén Fernández-Beltrán , Gokul Krishnan
Automated human gesture recognition is receiving significant research interest, with applications ranging from novel acquisition techniques to algorithms, data processing, and classification methodologies. This tutorial presents an overview of the fundamental components and basics of the current 3D optical image acquisition technologies for gesture recognition, including the most promising algorithms. Experimental results illustrate some examples of 3D integral imaging, which are compared to conventional 2D optical imaging. Examples of classifying human gestures under normal and degraded conditions, such as low illumination and the presence of partial occlusions, are provided. This tutorial is aimed at an audience who may or may not be familiar with gesture recognition approaches, current 3D optical image acquisition techniques, and classification algorithms and methodologies applied to human gesture recognition.
中文翻译:
使用 3D 光学成像进行自动人体手势识别的基础知识:教程
自动化的人体手势识别正受到广泛的研究兴趣,其应用范围从新颖的采集技术到算法、数据处理和分类方法。本教程概述了当前用于手势识别的 3D 光学图像采集技术的基本组件和基础知识,包括最有前途的算法。实验结果说明了 3D 积分成像的一些例子,它们与传统的 2D 光学成像进行了比较。提供了在正常和退化条件下对人类手势进行分类的示例,例如低照度和部分遮挡的存在。本教程面向可能熟悉或不熟悉手势识别方法、当前 3D 光学图像采集技术、
更新日期:2020-12-14
中文翻译:
使用 3D 光学成像进行自动人体手势识别的基础知识:教程
自动化的人体手势识别正受到广泛的研究兴趣,其应用范围从新颖的采集技术到算法、数据处理和分类方法。本教程概述了当前用于手势识别的 3D 光学图像采集技术的基本组件和基础知识,包括最有前途的算法。实验结果说明了 3D 积分成像的一些例子,它们与传统的 2D 光学成像进行了比较。提供了在正常和退化条件下对人类手势进行分类的示例,例如低照度和部分遮挡的存在。本教程面向可能熟悉或不熟悉手势识别方法、当前 3D 光学图像采集技术、