Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Growth-Etch Metal–Organic Chemical Vapor Deposition Approach of WS2 Atomic Layers
ACS Nano ( IF 15.8 ) Pub Date : 2020-12-24 , DOI: 10.1021/acsnano.0c05394 Assael Cohen 1 , Avinash Patsha 1 , Pranab K. Mohapatra 1 , Miri Kazes , Kamalakannan Ranganathan 1 , Lothar Houben , Dan Oron , Ariel Ismach 1
ACS Nano ( IF 15.8 ) Pub Date : 2020-12-24 , DOI: 10.1021/acsnano.0c05394 Assael Cohen 1 , Avinash Patsha 1 , Pranab K. Mohapatra 1 , Miri Kazes , Kamalakannan Ranganathan 1 , Lothar Houben , Dan Oron , Ariel Ismach 1
Affiliation
Metal–organic chemical vapor deposition (MOCVD) is one of the main methodologies used for thin-film fabrication in the semiconductor industry today and is considered one of the most promising routes to achieve large-scale and high-quality 2D transition metal dichalcogenides (TMDCs). However, if special measures are not taken, MOCVD suffers from some serious drawbacks, such as small domain size and carbon contamination, resulting in poor optical and crystal quality, which may inhibit its implementation for the large-scale fabrication of atomic-thin semiconductors. Here we present a growth-etch MOCVD (GE-MOCVD) methodology, in which a small amount of water vapor is introduced during the growth, while the precursors are delivered in pulses. The evolution of the growth as a function of the amount of water vapor, the number and type of cycles, and the gas composition is described. We show a significant domain size increase is achieved relative to our conventional process. The improved crystal quality of WS2 (and WSe2) domains wasis demonstrated by means of Raman spectroscopy, photoluminescence (PL) spectroscopy, and HRTEM studies. Moreover, time-resolved PL studies show very long exciton lifetimes, comparable to those observed in mechanically exfoliated flakes. Thus, the GE-MOCVD approach presented here may facilitate their integration into a wide range of applications.
中文翻译:
WS 2原子层的生长蚀刻金属有机化学气相沉积方法
金属有机化学气相沉积(MOCVD)是当今半导体工业中用于薄膜制造的主要方法之一,并且被认为是实现大规模和高质量2D过渡金属二硫化二氢(TMDC)的最有希望的途径之一)。但是,如果不采取特殊措施,MOCVD会遭受一些严重的缺陷,例如较小的畴尺寸和碳污染,从而导致较差的光学和晶体质量,这可能会妨碍其在大规模制造原子薄半导体中的应用。在这里,我们介绍了一种生长蚀刻MOCVD(GE-MOCVD)方法,其中在生长过程中引入了少量水蒸气,而前驱体以脉冲形式输送。生长量随水蒸气量,循环次数和类型的变化而变化,并且描述了气体组成。我们显示相对于我们的传统方法,可以实现显着的域大小增加。改进的WS晶体质量通过拉曼光谱,光致发光(PL)光谱和HRTEM研究证明了2(和WSe 2)域。而且,时间分辨的PL研究表明,激子寿命非常长,与机械剥落薄片中观察到的激子寿命相当。因此,此处介绍的GE-MOCVD方法可能有助于将它们集成到广泛的应用程序中。
更新日期:2021-01-26
中文翻译:
WS 2原子层的生长蚀刻金属有机化学气相沉积方法
金属有机化学气相沉积(MOCVD)是当今半导体工业中用于薄膜制造的主要方法之一,并且被认为是实现大规模和高质量2D过渡金属二硫化二氢(TMDC)的最有希望的途径之一)。但是,如果不采取特殊措施,MOCVD会遭受一些严重的缺陷,例如较小的畴尺寸和碳污染,从而导致较差的光学和晶体质量,这可能会妨碍其在大规模制造原子薄半导体中的应用。在这里,我们介绍了一种生长蚀刻MOCVD(GE-MOCVD)方法,其中在生长过程中引入了少量水蒸气,而前驱体以脉冲形式输送。生长量随水蒸气量,循环次数和类型的变化而变化,并且描述了气体组成。我们显示相对于我们的传统方法,可以实现显着的域大小增加。改进的WS晶体质量通过拉曼光谱,光致发光(PL)光谱和HRTEM研究证明了2(和WSe 2)域。而且,时间分辨的PL研究表明,激子寿命非常长,与机械剥落薄片中观察到的激子寿命相当。因此,此处介绍的GE-MOCVD方法可能有助于将它们集成到广泛的应用程序中。