当前位置: X-MOL 学术Rev. Res. Educ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mining Big Data in Education: Affordances and Challenges
Review of Research in Education ( IF 2.4 ) Pub Date : 2020-03-01 , DOI: 10.3102/0091732x20903304
Christian Fischer 1 , Zachary A. Pardos 2 , Ryan Shaun Baker 3 , Joseph Jay Williams 4 , Padhraic Smyth , Renzhe Yu 5 , Stefan Slater 3 , Rachel Baker , Mark Warschauer 5
Affiliation  

The emergence of big data in educational contexts has led to new data-driven approaches to support informed decision making and efforts to improve educational effectiveness. Digital traces of student behavior promise more scalable and finer-grained understanding and support of learning processes, which were previously too costly to obtain with traditional data sources and methodologies. This synthetic review describes the affordances and applications of microlevel (e.g., clickstream data), mesolevel (e.g., text data), and macrolevel (e.g., institutional data) big data. For instance, clickstream data are often used to operationalize and understand knowledge, cognitive strategies, and behavioral processes in order to personalize and enhance instruction and learning. Corpora of student writing are often analyzed with natural language processing techniques to relate linguistic features to cognitive, social, behavioral, and affective processes. Institutional data are often used to improve student and administrational decision making through course guidance systems and early-warning systems. Furthermore, this chapter outlines current challenges of accessing, analyzing, and using big data. Such challenges include balancing data privacy and protection with data sharing and research, training researchers in educational data science methodologies, and navigating the tensions between explanation and prediction. We argue that addressing these challenges is worthwhile given the potential benefits of mining big data in education.

中文翻译:

在教育中挖掘大数据:可供性和挑战

教育环境中大数据的出现导致了新的数据驱动方法,以支持明智的决策和提高教育有效性的努力。学生行为的数字化痕迹保证了对学习过程的更可扩展和更细粒度的理解和支持,而这在以前通过传统数据源和方法获取成本太高。这篇综合评论描述了微观层面(例如,点击流数据)、中间层面(例如,文本数据)和宏观层面(例如,机构数据)大数据的可供性和应用。例如,点击流数据通常用于操作和理解知识、认知策略和行为过程,以便个性化和加强教学和学习。学生写作的语料库经常使用自然语言处理技术进行分析,以将语言特征与认知、社会、行为和情感过程联系起来。机构数据通常用于通过课程指导系统和预警系统改进学生和行政决策。此外,本章概述了当前访问、分析和使用大数据的挑战。这些挑战包括在数据隐私和保护与数据共享和研究之间取得平衡,对研究人员进行教育数据科学方法的培训,以及应对解释和预测之间的紧张关系。我们认为,鉴于挖掘教育大数据的潜在好处,应对这些挑战是值得的。机构数据通常用于通过课程指导系统和预警系统改进学生和行政决策。此外,本章概述了当前访问、分析和使用大数据的挑战。这些挑战包括在数据隐私和保护与数据共享和研究之间取得平衡,对研究人员进行教育数据科学方法的培训,以及应对解释和预测之间的紧张关系。我们认为,鉴于挖掘教育大数据的潜在好处,应对这些挑战是值得的。机构数据通常用于通过课程指导系统和预警系统改进学生和行政决策。此外,本章概述了当前访问、分析和使用大数据的挑战。这些挑战包括在数据隐私和保护与数据共享和研究之间取得平衡,对研究人员进行教育数据科学方法的培训,以及应对解释和预测之间的紧张关系。我们认为,鉴于挖掘教育大数据的潜在好处,应对这些挑战是值得的。这些挑战包括在数据隐私和保护与数据共享和研究之间取得平衡,对研究人员进行教育数据科学方法的培训,以及应对解释和预测之间的紧张关系。我们认为,鉴于挖掘教育大数据的潜在好处,应对这些挑战是值得的。这些挑战包括在数据隐私和保护与数据共享和研究之间取得平衡,对研究人员进行教育数据科学方法的培训,以及应对解释和预测之间的紧张关系。我们认为,鉴于挖掘教育大数据的潜在好处,应对这些挑战是值得的。
更新日期:2020-03-01
down
wechat
bug