当前位置:
X-MOL 学术
›
J. Am. Math. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Elliptic stable envelopes
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2020-12-09 , DOI: 10.1090/jams/954 Mina Aganagic , Andrei Okounkov
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2020-12-09 , DOI: 10.1090/jams/954 Mina Aganagic , Andrei Okounkov
We construct stable envelopes in equivariant elliptic cohomology of Nakajima quiver varieties. In particular, this gives an elliptic generalization of the results of arXiv:1211.1287. We apply them to the computation of the monodromy of $q$-difference equations arising the enumerative K-theory of rational curves in Nakajima varieties, including the quantum Knizhnik-Zamolodchikov equations.
中文翻译:
椭圆稳定包络
我们在 Nakajima quiver 变种的等变椭圆上同调中构建了稳定的包络。特别是,这给出了 arXiv:1211.1287 的结果的椭圆概括。我们将它们应用于 $q$-差分方程的单项性计算,这些方程产生于 Nakajima 变体中的有理曲线的枚举 K 理论,包括量子 Knizhnik-Zamolodchikov 方程。
更新日期:2020-12-09
中文翻译:
椭圆稳定包络
我们在 Nakajima quiver 变种的等变椭圆上同调中构建了稳定的包络。特别是,这给出了 arXiv:1211.1287 的结果的椭圆概括。我们将它们应用于 $q$-差分方程的单项性计算,这些方程产生于 Nakajima 变体中的有理曲线的枚举 K 理论,包括量子 Knizhnik-Zamolodchikov 方程。