当前位置:
X-MOL 学术
›
ACS Appl. Nano Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nanoscale Patterning of Zinc Oxide from Zinc Acetate Using Electron Beam Lithography for the Preparation of Hard Lithographic Masks
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2020-12-16 , DOI: 10.1021/acsanm.0c02756 Ahmad Chaker 1 , Hayden R. Alty 1 , Peng Tian 1 , Anastasios Kotsovinos 1 , Grigore A. Timco 1 , Christopher A. Muryn 1 , Scott M. Lewis 1, 2, 3 , Richard E. P. Winpenny 1, 2
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2020-12-16 , DOI: 10.1021/acsanm.0c02756 Ahmad Chaker 1 , Hayden R. Alty 1 , Peng Tian 1 , Anastasios Kotsovinos 1 , Grigore A. Timco 1 , Christopher A. Muryn 1 , Scott M. Lewis 1, 2, 3 , Richard E. P. Winpenny 1, 2
Affiliation
An approach is presented for nanoscale patterning of zinc oxide (ZnO) using electron beam (e-beam) lithography for future nanoelectronic devices and for hard lithographic masks. Zinc acetate (Zn4O(CH3COO)6) films were exposed using a scanning electron microscope (SEM), causing decomposition of Zn4O(CH3COO)6 into ZnO. The exposure of Zn4O(CH3COO)6 using an electron beam was successfully utilized to fabricate 12 nm zinc oxide lines with a 40 nm pitch on silicon. The chemical composition of zinc acetate (film before e-beam exposure) and ZnO (film after e-beam exposure) was investigated using X-ray spectroscopy (XPS). The Zn 2p shift peaks and the O 1s contribution confirmed the decomposition of zinc acetate into zinc oxide after exposure. To confirm this transformation into ZnO, the optical band gap of the film was determined and the electrical resistivity of the film was measured. The electrical resistivity and the optical band gap results revealed the transformation into a ZnO film with a band gap of 3.31 eV at room temperature and an electrical resistivity of 91.5 Ω cm. The ZnO patterns were used as a hard mask to etch silicon, and it showed a good selectivity of 27:1 for dry etching silicon using SF6 and C4F8.
中文翻译:
用电子束光刻技术从乙酸锌中纳米氧化锌图案化,以制备硬光刻掩模
提出了一种使用电子束(电子束)光刻技术对氧化锌(ZnO)进行纳米级图案化的方法,用于未来的纳米电子器件和硬光刻掩模。使用扫描电子显微镜(SEM)曝光醋酸锌(Zn 4 O(CH 3 COO)6)膜,使Zn 4 O(CH 3 COO)6分解为ZnO。Zn 4 O(CH 3 COO)6的暴露使用电子束成功地用于在硅上制造间距为40 nm的12 nm氧化锌线。使用X射线光谱(XPS)研究了乙酸锌(电子束曝光前的膜)和ZnO(电子束曝光后的膜)的化学成分。Zn 2p位移峰和O 1s贡献证实了曝光后乙酸锌分解为氧化锌。为了确认这种向ZnO的转变,确定膜的光学带隙并测量膜的电阻率。电阻率和光学带隙结果表明在室温下转变为带隙为3.31 eV且电阻率为91.5Ωcm的ZnO薄膜。ZnO图案用作蚀刻硅的硬掩模,并显示出27的良好选择性:6和C 4 F 8。
更新日期:2021-01-22
中文翻译:
用电子束光刻技术从乙酸锌中纳米氧化锌图案化,以制备硬光刻掩模
提出了一种使用电子束(电子束)光刻技术对氧化锌(ZnO)进行纳米级图案化的方法,用于未来的纳米电子器件和硬光刻掩模。使用扫描电子显微镜(SEM)曝光醋酸锌(Zn 4 O(CH 3 COO)6)膜,使Zn 4 O(CH 3 COO)6分解为ZnO。Zn 4 O(CH 3 COO)6的暴露使用电子束成功地用于在硅上制造间距为40 nm的12 nm氧化锌线。使用X射线光谱(XPS)研究了乙酸锌(电子束曝光前的膜)和ZnO(电子束曝光后的膜)的化学成分。Zn 2p位移峰和O 1s贡献证实了曝光后乙酸锌分解为氧化锌。为了确认这种向ZnO的转变,确定膜的光学带隙并测量膜的电阻率。电阻率和光学带隙结果表明在室温下转变为带隙为3.31 eV且电阻率为91.5Ωcm的ZnO薄膜。ZnO图案用作蚀刻硅的硬掩模,并显示出27的良好选择性:6和C 4 F 8。