当前位置:
X-MOL 学术
›
Appl. Surf. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High-Performance Li-Ion Capacitor Constructed From Biomass-Derived Porous Carbon and High-Rate Li4Ti5O12
Applied Surface Science ( IF 6.3 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.apsusc.2020.148717 Yan-Ting Lin , Cai-Wan Chang-Jian , Tzu-Hsien Hsieh , Jen-Hsien Huang , Huei Chu Weng , Yu-Sheng Hsiao , Wei-Lin Syu , Chih-Ping Chen
Applied Surface Science ( IF 6.3 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.apsusc.2020.148717 Yan-Ting Lin , Cai-Wan Chang-Jian , Tzu-Hsien Hsieh , Jen-Hsien Huang , Huei Chu Weng , Yu-Sheng Hsiao , Wei-Lin Syu , Chih-Ping Chen
Abstract In this study we prepared a biomass-derived porous carbon and a high-rate Li4Ti5O12 (LTO) as cathode and anode materials, respectively, for Li-ion capacitors (LICs). We synthesized the bio-derived carbon through pyrolysis of rubberwood as the carbon source. The as-synthesized carbon featured a hierarchical micro/mesoporous architecture with a surface area of 1365 m2 g-1 and excellent electrochemical properties. A symmetric supercapacitor (SC) based on the bio-derived carbon material exhibited excellent capacitance characteristics and remarkable cycling stability. Furthermore, the rate performance of the spray-dried LTO modified through ionic doping and surface coating was much better than that of the unmodified LTO, due to enhanced conductivity and ionic diffusivity. Because of the outstanding rate capability of the modified LTO, the kinetic mismatch between the cathode and anode—a general problem for LICs—was overcome. After coupling the bio-derived porous carbon with the high-rate LTO, the as-fabricated LIC displayed a high energy/power density of 142 Wh kg-1/253 W kg-1, and even provided a value of 52.9 Wh kg-1 at 4556 W kg-1. In addition, this LIC retained 85.7% of its original capacity after 10,000 cycles.
中文翻译:
由生物质衍生的多孔碳和高倍率 Li4Ti5O12 构成的高性能锂离子电容器
摘要 在这项研究中,我们分别制备了生物质衍生的多孔碳和高倍率 Li4Ti5O12 (LTO) 作为锂离子电容器 (LIC) 的正极和负极材料。我们通过将橡胶木作为碳源进行热解合成了生物衍生碳。合成后的碳具有分级微/介孔结构,表面积为 1365 m2 g-1,具有优异的电化学性能。基于生物衍生碳材料的对称超级电容器(SC)表现出优异的电容特性和显着的循环稳定性。此外,由于增强的导电性和离子扩散性,通过离子掺杂和表面涂层改性的喷雾干燥 LTO 的倍率性能比未改性的 LTO 好得多。由于改进的 LTO 出色的速率能力,阴极和阳极之间的动力学失配——LIC 的一个普遍问题——得到了克服。将生物衍生多孔碳与高倍率 LTO 耦合后,制造的 LIC 显示出 142 Wh kg-1/253 W kg-1 的高能量/功率密度,甚至提供了 52.9 Wh kg-1 的值。 1 在 4556 W kg-1。此外,该 LIC 在 10,000 次循环后保留了其原始容量的 85.7%。
更新日期:2021-03-01
中文翻译:
由生物质衍生的多孔碳和高倍率 Li4Ti5O12 构成的高性能锂离子电容器
摘要 在这项研究中,我们分别制备了生物质衍生的多孔碳和高倍率 Li4Ti5O12 (LTO) 作为锂离子电容器 (LIC) 的正极和负极材料。我们通过将橡胶木作为碳源进行热解合成了生物衍生碳。合成后的碳具有分级微/介孔结构,表面积为 1365 m2 g-1,具有优异的电化学性能。基于生物衍生碳材料的对称超级电容器(SC)表现出优异的电容特性和显着的循环稳定性。此外,由于增强的导电性和离子扩散性,通过离子掺杂和表面涂层改性的喷雾干燥 LTO 的倍率性能比未改性的 LTO 好得多。由于改进的 LTO 出色的速率能力,阴极和阳极之间的动力学失配——LIC 的一个普遍问题——得到了克服。将生物衍生多孔碳与高倍率 LTO 耦合后,制造的 LIC 显示出 142 Wh kg-1/253 W kg-1 的高能量/功率密度,甚至提供了 52.9 Wh kg-1 的值。 1 在 4556 W kg-1。此外,该 LIC 在 10,000 次循环后保留了其原始容量的 85.7%。