当前位置:
X-MOL 学术
›
Energy Fuels
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
g-C3N4/α-Fe2O3 Supported Zero-Dimensional Co3S4 Nanoparticles Form S-Scheme Heterojunction Photocatalyst for Efficient Hydrogen Production
Energy & Fuels ( IF 5.2 ) Pub Date : 2020-12-11 , DOI: 10.1021/acs.energyfuels.0c03351 Teng Yan 1, 2, 3 , Hua Liu 1, 2, 3 , Zhiliang Jin 1, 2, 3
Energy & Fuels ( IF 5.2 ) Pub Date : 2020-12-11 , DOI: 10.1021/acs.energyfuels.0c03351 Teng Yan 1, 2, 3 , Hua Liu 1, 2, 3 , Zhiliang Jin 1, 2, 3
Affiliation
It is still a great challenge to develop photocatalysts with high efficiency and low cost to reach the scale of industrialization. In this work, we prepared an S-type heterojunction photocatalyst with Co3S4 nanoparticles supported on g-C3N4/α-Fe2O3. Characterizations, such as PL, UV–vis, electrochemical impedance spectroscopy, and linear sweep voltammetry, proved that the composite material had excellent photoelectrochemical performance and good stability. The hydrogen evolution amount of g-C3N4/α-Fe2O3/Co3S4 is as high as 191.41 μmol, which is about 30 times that of pure Co3S4 (6.38 μmol). The improvement performance of a composite material could be attributed to the following points: the EY molecules not only increase the light absorption rate of the samples but also act as electron donors; the highly dispersed Co3S4 nanoparticles provide a large number of reduction sites; and the constructed S-scheme heterojunction consumes useless electrons and holes in the hydrogen production system and utilizes the strong redox potential of the composite material to promote the separation of photogenerated carriers. In particular, Co3S4 nanoparticles with different degrees of dispersion were prepared by changing the preparation sequence of the composite catalyst. The design ideas of this experiment can provide an effective reference for the synthesis of efficient and stable multiple photocatalyst systems.
中文翻译:
GC 3 Ñ 4 /的α-Fe 2 ö 3支持的零维钴3小号4纳米颗粒形式S-方案异质结光触媒用于高效制氢
开发高效,低成本的光催化剂以达到工业化规模仍然是一个巨大的挑战。在这项工作中,我们制备了用Co一个S型异质结光催化剂3小号4个纳米颗粒负载于GC 3 Ñ 4 /的α-Fe 2 ö 3。PL,UV-vis,电化学阻抗谱和线性扫描伏安法等特性证明该复合材料具有出色的光电化学性能和良好的稳定性。GC的氢生成量3 Ñ 4 /的α-Fe 2 ö 3 / Co的3小号4最高为191.41μmol,约为纯Co 3 S 4(6.38μmol)的30倍。复合材料的性能改善可归因于以下几点:EY分子不仅提高了样品的吸光率,而且还充当了电子给体。高分散的Co 3 S 4纳米颗粒提供了大量的还原位点。所构造的S型异质结在制氢系统中消耗了无用的电子和空穴,并利用了复合材料的强氧化还原电位来促进光生载流子的分离。特别是Co 3 S 4通过改变复合催化剂的制备顺序,制备了具有不同分散度的纳米颗粒。该实验的设计思想可为合成高效稳定的多种光催化剂体系提供有效参考。
更新日期:2021-01-07
中文翻译:
GC 3 Ñ 4 /的α-Fe 2 ö 3支持的零维钴3小号4纳米颗粒形式S-方案异质结光触媒用于高效制氢
开发高效,低成本的光催化剂以达到工业化规模仍然是一个巨大的挑战。在这项工作中,我们制备了用Co一个S型异质结光催化剂3小号4个纳米颗粒负载于GC 3 Ñ 4 /的α-Fe 2 ö 3。PL,UV-vis,电化学阻抗谱和线性扫描伏安法等特性证明该复合材料具有出色的光电化学性能和良好的稳定性。GC的氢生成量3 Ñ 4 /的α-Fe 2 ö 3 / Co的3小号4最高为191.41μmol,约为纯Co 3 S 4(6.38μmol)的30倍。复合材料的性能改善可归因于以下几点:EY分子不仅提高了样品的吸光率,而且还充当了电子给体。高分散的Co 3 S 4纳米颗粒提供了大量的还原位点。所构造的S型异质结在制氢系统中消耗了无用的电子和空穴,并利用了复合材料的强氧化还原电位来促进光生载流子的分离。特别是Co 3 S 4通过改变复合催化剂的制备顺序,制备了具有不同分散度的纳米颗粒。该实验的设计思想可为合成高效稳定的多种光催化剂体系提供有效参考。