当前位置: X-MOL 学术Angew. Chem. Int. Ed. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Artificial Heterointerfaces Achieve Delicate Reaction Kinetics towards Hydrogen Evolution and Hydrazine Oxidation Catalysis
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2020-12-11 , DOI: 10.1002/anie.202014362
Yi Xie 1 , Qizhu Qian 2 , Jihua Zhang 3 , Jianming Li 4 , Yapeng Li 5 , Xu Jin 4 , Yin Zhu 5 , Yi Liu 5 , Ziyun Li 5 , Ahmed El-Harairy 5 , Chong Xiao 5 , Genqiang Zhang 5
Affiliation  

Electrochemical water splitting for H2 production is limited by the sluggish anode oxygen evolution reaction (OER), thus using hydrazine oxidation reaction (HzOR) to replace OER has received great attention. Here we report the hierarchical porous nanosheet arrays with abundant Ni3N‐Co3N heterointerfaces on Ni foam with superior hydrogen evolution reaction (HER) and HzOR activity, realizing working potentials of −43 and −88 mV for 10 mA cm−2, respectively, and achieving an industry‐level 1000 mA cm−2 at 200 mV for HzOR. The two‐electrode overall hydrazine splitting (OHzS) electrolyzer requires the cell voltages of 0.071 and 0.76 V for 10 and 400 mA cm−2, respectively. The H2 production powered by a direct hydrazine fuel cell (DHzFC) and a commercial solar cell are investigated to inspire future practical applications. DFT calculations decipher that heterointerfaces simultaneously optimize the hydrogen adsorption free energy (ΔGH*) and promote the hydrazine dehydrogenation kinetics. This work provides a rationale for advanced bifunctional electrocatalysts, and propels the practical energy‐saving H2 generation techniques.

中文翻译:

人工异质界面实现对氢气释放和肼氧化催化的精细反应动力学

缓慢的阳极氧气析出反应(OER)限制了用于H 2生产的电化学水分解,因此用肼氧化反应(HzOR)代替OER受到了广泛的关注。在这里,我们报告了在泡沫镍上具有丰富的Ni 3 N-Co 3 N异质界面的分层多孔纳米片阵列,具有优异的析氢反应(HER)和HzOR活性,实现了10 mA cm -2的-43和-88 mV的工作电势,并在200 mV的HzOR下达到了工业水平的1000 mA cm -2。两电极整体肼分解(OHzS)电解器分别需要10和400 mA cm -2的电池电压为0.071 V和0.76V 。H研究了由直接肼燃料电池(DHzFC)和商用太阳能电池提供动力的2种产品,以激发未来的实际应用。DFT计算可解密异质界面同时优化氢吸附自由能(ΔG H *)并促进肼脱氢动力学。这项工作为先进的双功能电催化剂提供了理论依据,并推动了实用的节能H 2产生技术。
更新日期:2020-12-11
down
wechat
bug