Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Pressure‐Induced Formation and Mechanical Properties of 2D Diamond Boron Nitride
Advanced Science ( IF 14.3 ) Pub Date : 2020-12-11 , DOI: 10.1002/advs.202002541 Filippo Cellini 1 , Francesco Lavini 1, 2 , Elton Chen 3 , Angelo Bongiorno 4, 5 , Filip Popovic 1 , Ryan L Hartman 1 , Remi Dingreville 3 , Elisa Riedo 1
Advanced Science ( IF 14.3 ) Pub Date : 2020-12-11 , DOI: 10.1002/advs.202002541 Filippo Cellini 1 , Francesco Lavini 1, 2 , Elton Chen 3 , Angelo Bongiorno 4, 5 , Filip Popovic 1 , Ryan L Hartman 1 , Remi Dingreville 3 , Elisa Riedo 1
Affiliation
Understanding phase transformations in 2D materials can unlock unprecedented developments in nanotechnology, since their unique properties can be dramatically modified by external fields that control the phase change. Here, experiments and simulations are used to investigate the mechanical properties of a 2D diamond boron nitride (BN) phase induced by applying local pressure on atomically thin h‐BN on a SiO2 substrate, at room temperature, and without chemical functionalization. Molecular dynamics (MD) simulations show a metastable local rearrangement of the h‐BN atoms into diamond crystal clusters when increasing the indentation pressure. Raman spectroscopy experiments confirm the presence of a pressure‐induced cubic BN phase, and its metastability upon release of pressure. Å‐indentation experiments and simulations show that at pressures of 2–4 GPa, the indentation stiffness of monolayer h‐BN on SiO2 is the same of bare SiO2, whereas for two‐ and three‐layer‐thick h‐BN on SiO2 the stiffness increases of up to 50% compared to bare SiO2, and then it decreases when increasing the number of layers. Up to 4 GPa, the reduced strain in the layers closer to the substrate decreases the probability of the sp2‐to‐sp3 phase transition, explaining the lower stiffness observed in thicker h‐BN.
中文翻译:
二维金刚石氮化硼的压力诱导形成和机械性能
了解二维材料中的相变可以开启纳米技术前所未有的发展,因为控制相变的外部场可以极大地改变它们独特的性质。在这里,通过实验和模拟来研究二维金刚石氮化硼 (BN) 相的机械性能,该相是通过在 SiO 2 基底上的原子级薄 h-BN 上施加局部压力而诱导的,在室温下且没有化学功能化。分子动力学 (MD) 模拟显示,当压痕压力增加时,h-BN 原子会发生亚稳态局部重排,形成金刚石晶簇。拉曼光谱实验证实了压力诱导的立方氮化硼相的存在,及其在压力释放时的亚稳定性。Å压痕实验和模拟表明,在2-4 GPa压力下,SiO 2上单层h-BN的压痕刚度与裸SiO 2相同,而SiO 2 上两层和三层厚h-BN的压痕刚度如图2所示,与裸SiO 2相比,刚度增加了高达50% ,然后随着层数的增加而降低。在高达 4 GPa 的压力下,靠近基底的层中应变的减小降低了 sp 2到 sp 3相变的可能性,这解释了在较厚的 h-BN 中观察到的较低刚度。
更新日期:2021-01-20
中文翻译:
二维金刚石氮化硼的压力诱导形成和机械性能
了解二维材料中的相变可以开启纳米技术前所未有的发展,因为控制相变的外部场可以极大地改变它们独特的性质。在这里,通过实验和模拟来研究二维金刚石氮化硼 (BN) 相的机械性能,该相是通过在 SiO 2 基底上的原子级薄 h-BN 上施加局部压力而诱导的,在室温下且没有化学功能化。分子动力学 (MD) 模拟显示,当压痕压力增加时,h-BN 原子会发生亚稳态局部重排,形成金刚石晶簇。拉曼光谱实验证实了压力诱导的立方氮化硼相的存在,及其在压力释放时的亚稳定性。Å压痕实验和模拟表明,在2-4 GPa压力下,SiO 2上单层h-BN的压痕刚度与裸SiO 2相同,而SiO 2 上两层和三层厚h-BN的压痕刚度如图2所示,与裸SiO 2相比,刚度增加了高达50% ,然后随着层数的增加而降低。在高达 4 GPa 的压力下,靠近基底的层中应变的减小降低了 sp 2到 sp 3相变的可能性,这解释了在较厚的 h-BN 中观察到的较低刚度。