当前位置:
X-MOL 学术
›
Phys. Chem. Chem. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A theoretical study of atomically dispersed MN4/C (M = Fe or Mn) as a high-activity catalyst for the oxygen reduction reaction
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2020-11-23 , DOI: 10.1039/d0cp04676k
Hao Xu 1, 2, 3, 4, 5 , Dan Wang 1, 2, 3, 4, 5 , Peixia Yang 1, 2, 3, 4, 5 , Anmin Liu 5, 6, 7, 8 , Ruopeng Li 1, 2, 3, 4, 5 , Yun Li 1, 2, 3, 4, 5 , Lihui Xiao 1, 2, 3, 4, 5 , Jinqiu Zhang 1, 2, 3, 4, 5 , Maozhong An 1, 2, 3, 4, 5
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2020-11-23 , DOI: 10.1039/d0cp04676k
Hao Xu 1, 2, 3, 4, 5 , Dan Wang 1, 2, 3, 4, 5 , Peixia Yang 1, 2, 3, 4, 5 , Anmin Liu 5, 6, 7, 8 , Ruopeng Li 1, 2, 3, 4, 5 , Yun Li 1, 2, 3, 4, 5 , Lihui Xiao 1, 2, 3, 4, 5 , Jinqiu Zhang 1, 2, 3, 4, 5 , Maozhong An 1, 2, 3, 4, 5
Affiliation
![]() |
Carbon-based, non-noble metal catalysts for the oxygen reduction reaction (ORR) are crucial for the large-scale application of metal–air batteries and fuel cells. Density functional theory calculations were performed to explore the potential of atomically dispersed MN4/C (M = Fe or Mn) as an ORR catalyst in an acidic electrolyte and the ORR mechanism on MN4/C was systematically studied. The results indicated MN4 as the active site of MN4/C and a four-electron OOH transformation pathway as the preferred ORR mechanism on the MN4/C surface. The Gibbs free energy diagram showed that the rate-determining step of the FeN4/C and MnN4/C catalysts is the formation of the second H2O molecule and OOH*, respectively. FeN4/C exhibited higher thermodynamic limiting potential (0.79 V) and, thus, higher ORR activity than MnN4/C (0.52 V) in an acidic environment; its excellent catalytic performance is due to the nice electron structure and adsorption properties of the FeN4 site. Therefore, this work demonstrates that atomically dispersed MN4/C is a promising catalyst for the ORR.
中文翻译:
原子分散的MN4 / C(M = Fe或Mn)作为氧还原反应高活性催化剂的理论研究
用于氧还原反应(ORR)的碳基非贵金属催化剂对于金属空气电池和燃料电池的大规模应用至关重要。进行了密度泛函理论计算,以探索原子分散的MN 4 / C(M = Fe或Mn)在酸性电解质中作为ORR催化剂的潜力,并系统研究了MN 4 / C的ORR机理。结果表明,MN 4是MN 4 / C的活性位点,四电子OOH转化途径是MN 4 / C表面的优选ORR机制。吉布斯自由能图表明FeN 4 / C和MnN 4的速率确定步骤/ C催化剂分别是第二个H 2 O分子和OOH *的形成。FeN 4 / C在酸性环境中显示出更高的热力学极限电势(0.79 V),因此比MnN 4 / C(0.52 V)具有更高的ORR活性;其出色的催化性能归因于良好的电子结构和FeN 4位的吸附性能。因此,这项工作证明原子分散的MN 4 / C是ORR的有希望的催化剂。
更新日期:2020-12-09
中文翻译:

原子分散的MN4 / C(M = Fe或Mn)作为氧还原反应高活性催化剂的理论研究
用于氧还原反应(ORR)的碳基非贵金属催化剂对于金属空气电池和燃料电池的大规模应用至关重要。进行了密度泛函理论计算,以探索原子分散的MN 4 / C(M = Fe或Mn)在酸性电解质中作为ORR催化剂的潜力,并系统研究了MN 4 / C的ORR机理。结果表明,MN 4是MN 4 / C的活性位点,四电子OOH转化途径是MN 4 / C表面的优选ORR机制。吉布斯自由能图表明FeN 4 / C和MnN 4的速率确定步骤/ C催化剂分别是第二个H 2 O分子和OOH *的形成。FeN 4 / C在酸性环境中显示出更高的热力学极限电势(0.79 V),因此比MnN 4 / C(0.52 V)具有更高的ORR活性;其出色的催化性能归因于良好的电子结构和FeN 4位的吸附性能。因此,这项工作证明原子分散的MN 4 / C是ORR的有希望的催化剂。