当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Iron-Mineralization-Induced Mesoporous Metal–Organic Frameworks Enable High-Efficiency Synergistic Catalysis of Natural/Nanomimic Enzymes
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-12-09 , DOI: 10.1021/acsami.0c16689 Siming Huang 1 , Guosheng Chen 2 , Niru Ye 2 , Xiaoxue Kou 2 , Rui Zhang 3 , Jun Shen 1 , Gangfeng Ouyang 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-12-09 , DOI: 10.1021/acsami.0c16689 Siming Huang 1 , Guosheng Chen 2 , Niru Ye 2 , Xiaoxue Kou 2 , Rui Zhang 3 , Jun Shen 1 , Gangfeng Ouyang 2
Affiliation
Metal–organic frameworks (MOFs) have become a promising accommodation for enzyme immobilization and protection. However, the integration of multienzymes into MOFs may result in compromise of individual enzymatic activity. In this work, we report an iron mineralization strategy to facilely construct a mesoporous MOF, possessing excellent peroxidase-mimic bioactivity. Furthermore, the feasibility of in situ encapsulating natural enzymes within the developed mesoporous MOF nanozymes endows these natural/nanomimic enzyme hybrids with remarkably enhanced synergistic catalysis ability. Such activity enhancement is mainly due to (1) the fast flux rate of substances through the interconnected mesoporous channels and (2) the simultaneously increased loading amount of enzymes and iron within the MOFs caused by the iron mineralization process.
中文翻译:
铁矿化诱导的介孔金属有机框架实现了天然/纳米酶的高效协同催化
金属有机框架(MOF)已成为酶固定和保护的有前途的场所。但是,将多种酶整合到MOF中可能会损害单个酶的活性。在这项工作中,我们报告了铁矿化策略,以轻松地构建具有良好的过氧化物酶模拟生物活性的介孔MOF。此外,在开发的介孔MOF纳米酶中原位包裹天然酶的可行性使这些天然/纳米酶杂交体具有显着增强的协同催化能力。这种活性增强主要归因于(1)物质通过相互连通的中孔通道的快速通量,以及(2)同时由铁矿化过程引起的MOF中酶和铁的负载量同时增加。
更新日期:2020-12-23
中文翻译:
铁矿化诱导的介孔金属有机框架实现了天然/纳米酶的高效协同催化
金属有机框架(MOF)已成为酶固定和保护的有前途的场所。但是,将多种酶整合到MOF中可能会损害单个酶的活性。在这项工作中,我们报告了铁矿化策略,以轻松地构建具有良好的过氧化物酶模拟生物活性的介孔MOF。此外,在开发的介孔MOF纳米酶中原位包裹天然酶的可行性使这些天然/纳米酶杂交体具有显着增强的协同催化能力。这种活性增强主要归因于(1)物质通过相互连通的中孔通道的快速通量,以及(2)同时由铁矿化过程引起的MOF中酶和铁的负载量同时增加。