当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multifunctional Reversible Self‐Assembled Structures of Cellulose‐Derived Phase‐Change Nanocrystals
Advanced Materials ( IF 27.4 ) Pub Date : 2020-12-06 , DOI: 10.1002/adma.202005263 Yonggui Wang 1 , Zhe Qiu 1 , Zhen Lang 1 , Yanjun Xie 1 , Zefang Xiao 1 , Haigang Wang 1 , Daxin Liang 1 , Jian Li 1 , Kai Zhang 2
Advanced Materials ( IF 27.4 ) Pub Date : 2020-12-06 , DOI: 10.1002/adma.202005263 Yonggui Wang 1 , Zhe Qiu 1 , Zhen Lang 1 , Yanjun Xie 1 , Zefang Xiao 1 , Haigang Wang 1 , Daxin Liang 1 , Jian Li 1 , Kai Zhang 2
Affiliation
Owing to advantageous properties attributed to well‐organized structures, multifunctional materials with reversible hierarchical and highly ordered arrangement in solid‐state assembled structures have drawn tremendous interest. However, such materials rarely exist. Based on the reversible phase transition of phase‐change materials (PCMs), phase‐change nanocrystals (C18‐UCNCs) are presented herein, which are capable of self‐assembling into well‐ordered hierarchical structures. C18‐UCNCs have a core–shell structure consisting of a cellulose crystalline core that retains the basic structure and a soft shell containing octadecyl chains that allow phase transition. The distinct core–shell structure and phase transition of octadecyl chains allow C18‐UCNCs to self‐assemble into flaky nano/microstructures. These self‐assembled C18‐UCNCs exhibit efficient thermal transport and light‐to‐thermal energy conversion, and thus are promising for thermosensitive imaging. Specifically, flaky self‐assembled nano/microstructures with manipulable surface morphology, surface wetting, and optical properties are thermoreversible and show thermally induced self‐healing properties. By using phase‐change nanocrystals as a novel group of PCMs, reversible self‐assembled multifunctional materials can be engineered. This study proposes a promising approach for constructing self‐assembled hierarchical structures by using phase‐change nanocrystals and thereby significantly expands the application of PCMs.
中文翻译:
纤维素衍生相变纳米晶的多功能可逆自组装结构
由于组织良好的结构具有有利的特性,在固态组装结构中具有可逆分层和高度有序排列的多功能材料引起了极大的兴趣。然而,这样的材料很少存在。基于相变材料 (PCM) 的可逆相变,本文提出了相变纳米晶体 (C18-UCNCs),它们能够自组装成有序的分层结构。C18-UCNC 具有核壳结构,由保留基本结构的纤维素结晶核和含有允许相变的十八烷基链的软壳组成。十八烷基链独特的核壳结构和相变使 C18-UCNC 能够自组装成片状纳米/微结构。这些自组装的 C18-UCNC 表现出高效的热传输和光到热能的转换,因此有望用于热敏成像。具体来说,具有可操纵表面形态、表面润湿性和光学特性的片状自组装纳米/微结构是热可逆的,并显示出热诱导的自修复特性。通过使用相变纳米晶体作为一组新型 PCM,可以设计出可逆的自组装多功能材料。本研究提出了一种通过使用相变纳米晶体构建自组装分层结构的有前途的方法,从而显着扩展了 PCM 的应用。
更新日期:2021-01-19
中文翻译:
纤维素衍生相变纳米晶的多功能可逆自组装结构
由于组织良好的结构具有有利的特性,在固态组装结构中具有可逆分层和高度有序排列的多功能材料引起了极大的兴趣。然而,这样的材料很少存在。基于相变材料 (PCM) 的可逆相变,本文提出了相变纳米晶体 (C18-UCNCs),它们能够自组装成有序的分层结构。C18-UCNC 具有核壳结构,由保留基本结构的纤维素结晶核和含有允许相变的十八烷基链的软壳组成。十八烷基链独特的核壳结构和相变使 C18-UCNC 能够自组装成片状纳米/微结构。这些自组装的 C18-UCNC 表现出高效的热传输和光到热能的转换,因此有望用于热敏成像。具体来说,具有可操纵表面形态、表面润湿性和光学特性的片状自组装纳米/微结构是热可逆的,并显示出热诱导的自修复特性。通过使用相变纳米晶体作为一组新型 PCM,可以设计出可逆的自组装多功能材料。本研究提出了一种通过使用相变纳米晶体构建自组装分层结构的有前途的方法,从而显着扩展了 PCM 的应用。